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ABSTRACT: In the last years there have been multiple proposals
in nanophotonics to mimic topological condensed matter systems.
However, nanoparticles have degrees of freedom that atoms lack of,
like dimensions or shape, which can be exploited to explore topology
beyond electronics. Elongated nanoparticles can act like projectors
of the electric field in the direction of the major axis. Then, by
orienting them in an array the coupling between them can be tuned,
allowing to open a gap in an otherwise gapless system. As a proof of
the potential of the use of orientation of nanoparticles for topology,
we study 1D chains of prolate spheroidal silver nanoparticles. We
show that in these arrays spatial modulation of the polarization
allows to open gaps, engineer hidden crystalline symmetries and to
switch on/off or left/right edge states depending on the polarization
of the incident electric field. This opens a path toward exploiting features of nanoparticles for topology to go beyond analogues of
condensed matter systems.
KEYWORDS: topological photonics, plasmonics, nanoparticle arrays, edge states, surface plasmons

■ INTRODUCTION
The exciting discovery of the topological phase of matter
systems has inspired many new fields in physics, particularly in
photonics;1−3 in fact, in recent years, we have witnessed an
exponential growth of interests in that direction. Mimicking
the phenomenology of topological insulators has been the
driving force until now. However, it is becoming clear that a
further step needs to be taken, that is, to push forward new
topological photonic phenomenology that does not have a
material counterpart.
Topological insulators are possible thanks to the Fermionic

nature of electrons,4 but photons cannot take advantage of
such symmetry. Initial solutions have been proposed based on
gyromagnetic photonic crystals,5 bianisotropic materials,6 and
coupled waveguides and resonators.7,8

All the previous systems use some kind of time-reversal
property not present in simple photonics systems without
magnetic response. In addition, there is always a strong interest
in achieving very small and faster devices for nanotechnological
applications. Typical examples are microprocessors, but light
interacts weakly with the material at the nanoscale. Moreover,
one would like to have such photonic properties in the visible,
where most of the molecular electronic transitions happens,
making such zone relevant in light-matter interaction. With
these goals and restriction in mind, metal nanoparticles using
plasmonic resonances are probably the best candidates. This

has made it possible for many researchers to look at what we
can call topological nanoparticle photonics.9,10

Plasmonic nanoparticles provide an excellent platform for
light-matter interaction, but being not simple to break time-
reversal symmetry in the visible range, a typical approach is
using crystal symmetries.11−16 Such an approach has also been
explored for radiative heat transfer with interesting results.17

In addition, particular care needs to be taken due to the
long-range nature of these interactions and the radiative
corrections,10,18,19 which can spoil the topological protection
of the system. Here, instead of focusing on such loss of
protection, we explore degrees of freedom of the nanoparticles
which could be exploited for topology beyond condensed
matter systems.
This paper is organized as follows. In the first section we

introduce the simplest topological system, a dimer chain
known as SSH model, and its extensions for larger unit cells. In
the second section we study and compare different plasmonic
counterparts of these chains. In last section we discuss the
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excitation and switching of the edge states of the plasmonic
chains of elongated nanoparticles by an incoming electric field.

■ SSH MODEL AND TOPOLOGICAL PHASES
The Su-Schrieffer-Heeger (SSH) model is the simplest system
with topological protection. It was first proposed in ref 20 to
describe the physics of the polyacetylene chain, which
alternates double and simple (or strong and weak) bonds
between adjacent carbon atoms. In Figure 1a we show a

scheme of this model, which consists of a one-dimensional
diatomic chain with two staggered hopping amplitudes
between nearest neighbors, namely, v and w. Its tight-binding
Hamiltonian is

i
k
jjjjjj

y
{
zzzzzz= +

+
q

v w

v we
( )

0 e

0

iqd

iqd (1)

and satisfies the Schrödinger equation:

| = |q u q E q u q( ) ( ) ( ) ( )n n n (2)

This system has two different distinct topological phases: it
is trivial when the bond between particles in adjacent unit cells
is weaker than the one between particles within a unit cell (|w|
< |v|) and topological when it is stronger (|w| > |v|). When we
chop the periodic chain commensurately with the topological
unit cell, it hosts strongly localized zero-energy states at both
ends. These edge states are robust to disorder and
perturbations that respect its symmetries: sublattice symmetry
(also known as chirality) and mirror/inversion symmetries.
Sublattice symmetry stems from the existence of two
sublattices (A and B) with bonds between sublattices but
not within a sublattice. This implies the Hamiltonian is
antiblock-diagonal, i.e.:
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Chirality makes the spectrum symmetric around zero energy
and fixes the energy of the edge states at zero, isolating them
from the bulk states. It also makes each edge state be localized
in just one of the sublattices.
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The SSH model is mirror-symmetric because the system
remains invariant under spatial inversion in the x-axis, i.e.,
under the operation of Π:

= =q q q( ) ( ) ( )T (5)

The SSH chain is also inversion-symmetric, as it remains
invariant under the subsequent spatial inversion in all axes.
Mirror or inversion symmetries lead to the double degeneracy
of the edge states, even when the sublattice symmetry is
broken.
As long as chirality and mirror symmetries are respected, the

Zak phase21 γ, a bulk property, is a topological invariant and
predicts the existence of edge states in the terminated
system.22 This is known as bulk-boundary correspondence.
The Zak phase for each band and for the gap is

=

=

u q u q q( ) ( ) dn n
q

n

n

BZ

below gap (6)

In electronic systems, when the system is neutral, only half of
the bands are below the Fermi level, so in the SSH model only
the lower band contributes to the Zak phase.
In the following subsection we introduce some extensions of

the SSH model.
Extended Unit Cell SSH Models. Due to the simplicity of

the system, several generalizations of the SSH model have been
made, for example, by adding hoppings between further
neighbors23 or by extending to two dimensions in a square
array.24 This model can also be generalized to one-dimensional
chains with larger linear unit cells25−28 or rhombus unit cells.29

These systems are topologically more complex than the SSH
model, featuring several gaps and nonzero edge states. They
can also exhibit other kinds of topological protection like
square-root topology.30

First, as we show in Figure 1b, we consider a linear chain
with three alternating hopping amplitudes u, v, and w. This
lattice has three different sublattices A, B, and C. The topology
of this system has been discussed in refs 28, 31, and 32.
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A three-way generalization of the sublattice symmetry can be
made for this chain:
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This symmetry is the same that features the breathing Kagome
lattice.33 However, due to the absence of the C3 rotational
symmetry also present in the Kagome lattice, in this 1D system
there are not three degenerate zero-states but four nonzero
edge states. Additionally, the edge states are not localized in

Figure 1. (a) The simplest model with topological protection, the
SSH chain, consisting of a diatomic chain with staggered hoppings v
and w. (b) Extended three-particle SSH chain (or SSH3), alternating
hoppings u, v, and w. (c) Extended 4-particle SSH chain (or SSH4),
alternating hoppings t, u, v, and w.
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just one of the sublattices but the two closer to the edge. When
the chain is mirror symmetric, i.e., |u| = |v|, the edge states
come in two degenerate pairs at energies −E and E when |w| > |
u|. Each gap has a distinct Zak phase that is quantized by
mirror symmetry. Due to the three-way chirality, they are not
independent, but the same.
Similarly, we can consider a chain with a 4-particle unit cell,

shown in Figure 1c, with hoppings t, u, v, and w. The tight-
binding Hamiltonian (in the base A, C, B, D) is
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Due to the even number of particles in the unit cell, this chain
recovers the sublattice symmetry from the SSH model. The
transition for the central gap occurs when |tv| = |uw|. When |tv|
> |uw| the system is in the trivial phase, whereas for |tv| < |uw|
the system has symmetry-protected zero-energy states that
localize exclusively in even or odd sublattices.
However, the system also features nonzero energy states in

the lower/upper gaps. These states inherit properties from the
four-way generalized chirality, which is given by
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This symmetry makes the nonzero edge states be localized in
three out of the four sublattices. However, this symmetry does
not close lower/upper gaps or quantize their Zak phases, but
spatial symmetries do. The system is mirror/inversion
symmetric when |t| = |v|. Mirror symmetric nonzero energy
edge states appear for |w| > |u|.

■ TOPOLOGICAL PLASMONIC CHAINS
Coupled-Dipole Equations. Now we focus in arrays of

plasmonic nanoparticles. Previously, optical response of
metallic nanoparticles has been used to mimic topological
condensed matter systems, as in zigzag chains,35,36 diatomic
chains of nanospheres,37 or breathing Kagome38 and breathing
honeycomb plasmonic metasurfaces.39,40 However, in these
systems it has been shown that long-range interactions
between nanoparticles must be considered, which have a
striking effect on the topology of the system.18,19

Electric fields produce localized surface plasmon resonances
(LSPR) in metallic nanoparticles. A small single nanoparticle
with a ≪ λ (where a is the particle radius and λ is the

Figure 2. Arrays of plasmonic nanoparticles. (a) Extinction cross sections of a silver nanosphere of radius a = 12.5 nm (blue curve) and prolate
spheroidal (a = 12.5 nm, b = c = 5 nm) silver nanoparticles (red curve for the major axis polarization and green line for any polarization in the
perpendicular plane) embedded in glass (ϵB = 2.25); Ag dielectric function from.34 (b, c) Schematic of the SSH analogue consisting of plasmonic
chains with (b) alternating distances between nanospheres and (c) equidistant nanospheroids alternating orientations. (d) Interaction between
nanospheroids depending on their orientations. Projection of the Green dyadic’s function on the directions of the nanoparticles normalized by

k R
1

4 2 3 .
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wavelength of incoming light) scatters an incident electric field
Einc approximately like a dipole p:

=p E( )B inc (11)

where ϵB is the permittivity of the background medium and
( ) is the polarizability tensor.
We choose particles such that a > 3−4 nm to avoid quantum

effects. However, to take into account these quantum effects in
a simple way, a solution is to follow the prescription of Kreibig
that showed how the finite size affects the electron free path.41

The dipolar approximation still holds for an array of
nanoparticles, if they are separated a distance of at least 3a.
Then, each dipole in the array is determined by both the
incident electric field and the scattered electric field by the rest
of the dipoles:

’÷÷ i
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y

{
zzzzzz= + kp E G r r p( ) ( , , )n n

m n
n m minc

2

0 (12)

where n, m are sites in the array, pn,m are the dipoles in
positions rn,m and G r r( , , )n m is the Green’s dyadic function,
which in the quasi-static regime kR ≫ 1 is given by
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4

3n m 2 3 2 (13)

where R = rn − rm, R = |R|, and =k c/B is the wavevector.
In the next subsections we will consider examples of

topological arrays of nanoparticles.
Chain of Nanospheres. First, we consider a single

spherical metallic nanoparticle. A nanosphere has a spherical
symmetry, so its tensor polarizability behaves like a scalar,
α(ω), which in the quasi-static limit a ≪ λ is

=
+

a( ) 4
( )

( ) 2
3

0
B

B (14)

In Figure 2a we see the optical response of a single silver
nanosphere of radius a = 12.5 nm to a linear-polarized electric
field (blue curve), that shows a resonance for ℏωsp ∼ 2.75 eV.
Now we consider a plasmonic analogue of the SSH model,

i.e., a chain of nanospheres with two alternate distances: the
intracell distance d

2
and the intercell distance (2 ) d

2
, d

being the size of the unit cell (see scheme on Figure 2b). For
any array of nanospheres and in the absence of incident electric
field, we can rewrite eq 12 as

= ·k
p G r r p

1
( )

( , , )n
m n

n m m

2

0 (15)

After Bloch, coupled-dipole equations can be compacted in a
matrix equation:

=q P P( )
1

( ) (16)

where P = (p1x, p2x, p1y, p2y, p1z, p2z).
18 As we see, this is

equivalent to the Schrödinger equation in eq 2, where the
dipole vector, the inverse of the polarizability, and the Green’s
matrix q( ) take the roles of, respectively, eigenvectors,
eigenvalues, and the Bloch Hamiltonian q( ). Explicitly, q( )
terms are
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where μ, ν = x, y, and z are the polarizations of each pair of
dipoles, and mv is mx = 2 for the longitudinal polarization and
my,z = −1 for the transversal polarizations. This is, the
plasmonic dimer chain of nanospheres is equivalent to three
independent copies of the SSH (eq 1), one per polarization,
with =v m

d
2

0
3 3 and =w m

d
2

(2 )0
3 3 . The dispersion bands

ω(q) can be calculated from eq 16, searching for the solutions
of

=1
( )

0n
(18)

λn being the nth eigenvalue of q( ). The zero-energy modes
typical of the finite SSH model translate in this system to six
(two per polarization) resonant modes localized at the edges of
the chain at the surface plasmon frequency of a single
nanosphere ωsp.
Apart from the plasmonic diatomic 1D chain, the zigzag

chain,35,36 which alternates angles between the nanoparticles,
has also been proposed to mimic the topology of the SSH
model. This system exploits the polarization asymmetry
between longitudinal and transversal modes and allows to
select edge modes by changing the polarization of the
incoming electric field. In the next subsection we will get
advantage of this same anisotropy not in the geometry of the
array but in the shape of the nanoparticles, adding a new
degree of freedom to the system.
Chain of Nanospheroids.When the nanoparticles are not

spherical, ’÷ ( )i tensors are not proportional to the identity
matrix anymore, so they affect the polarization of the dipoles.
This asymmetry has no analogy in tight binding models and
can be exploited to explore new topological systems. For
example, if we replace the nanospheres in the previous chain by
parallel nanorods, we can filter modes by in-plane or out-of-
plane polarizations. However, by orienting the nanoparticles in
different directions, we can force modes beyond the plasmonic
nanosphere chain.
Previously, gradual change of orientation in arrays of

anisotropic nanoparticles or nanoholes has been exploited in
Pancharatnam-Berry metasurfaces (also known as geometric
phase metasurfaces) for example to enable polarization-
dependent control of light42 or to create vortex beams.43

Here we use orientation of elongated nanoparticles not to
build a geometric phase in polarization, but to tune the
interactions between nanoparticles in order to open a
topological gap. However, the spatial modulation of polar-
ization in our system plays a role in the control of edge states,
allowing to switch them off by changing the polarization of the
incident electric field, as we will see in last section.
The strategy pursued in this paper to open a topological gap

is similar to in ref 44, where it is opened by orientation in the
transversal plane of bianisotropic particles in an equidistant
array. However, our study is more general and in the visible
range.
Let us now assume our elongated nanoparticles are prolate

spheroidal nanoparticles with axis half-lengths a > b = c with
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the major axis pointing in the z direction. The results will be
qualitatively equivalent for any other elongated shape, so we’re
not losing generality by making this choice. In this case the
polarizability tensor is

i
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y

{

zzzzzzzzzzzzz
=( )

( ) 0 0

0 ( ) 0

0 0 ( )

c

c

a (19)

where the quasistatic polarizabilities αl with l ∈ [a, b, c] are45

=
+

V
L

( )
( )

( ( ) )l
b

b l b (20)

V being the volume of the spheroid, =V ac4
3

2, and Ll are
geometric factors (see Supporting Information).
In Figure 2a we can see the extinction cross section (see

Supporting Information for details) of a single silver nano-
spheroid with major axis a = 12.5 nm and minor axis b = c =
0.4a = 5 nm. Red curve represents the response to a field
polarized parallel to the major axis, while for the green curve
the field is polarized normal to the major axis. As we see, the
resonance wavelengths are separate enough (ℏωspc ∼ 2.96 eV,
whereas ℏωspa ∼ 2.0 eV), that in the proximity of the major
axis resonance, αc(ω ≃ ωspa) ≃ 0, so we can approximate the
tensor polarizability to
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jjjjjjjjjj

y
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zzzzzzzzzz
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0 0 ( )a

spa

(21)

This means the polarizability tensor acts like a projection
operator,46 projecting the dipole in the direction of the major
axis.
Now we consider an array of nanospheroids, with the major

axis oriented in the directions =u (cos , sin , 0)n n n
T , where

φn is the angle of the particle n with respect to the x axis. We
assume all the particles are oriented in the plane xy for the sake
of simplicity. As y and z axes are indistinguishable, all results
will be the same for the xz plane. The equations for the general
case, with nanoparticles oriented in any direction, are in the
Supporting Information.
Due to the projection of the polarizability in the directions

of the major axes of the particles, the vectorial coupled-dipole
equations in an array of nanospheroids can be reduced to
scalar equations:

=p
k

G p
1
( )a

n
m n

mu u

2

0
,m n

(22)

where = · ·G G r r u u( ( , , ) )m n m nu u,m n
is the projection of the

polarizability tensor in the directions um, un.
The coupled-dipole equations can again be rewritten in a

matrix form:

=k P P( )
1
( )a a

a
a

(23)

where in this case k( )a is a N × N matrix with elements given
by Gu u,m n

and Pa = (|p1|, ..., |pN|) is a vector containing the
module of the dipoles.

First, let us consider a 1D chain of equidistant nanoparticles,
separated by a distance R. We can see an scheme of this chain
in Figure 2c. As all the particles are in the x axis, the Green
dyadic’s function reduces to
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and its projection onto the ui and uj axes is

=G
k R

2 cos cos sin sin

4
m n m n

u u, 2 3m n (25)

This means that we can tune the coupling between
nanoparticles by rotating them. In Figure 2d we plot the
interaction Gu u,m n

multiplied by 4πk2R3, depending on the
orientation angles φm and φn. This interaction ranges from 2
(parallel dipoles in the longitudinal direction) to −2
(antiparallel and in the longitudinal direction), passing by
−1 (parallel dipoles in the transversal polarization). For any
pair of angles in the zero contour line, the interaction is
suppressed. For example, orthogonal nanospheroids oriented
in the x and y directions do not interact between them, as we
see for φi = 0, φj = 2

or vice versa in the colormap.
This zero interaction was impossible to achieve in the

nanosphere chain and it could only be approximated by
separating the particles a long distance (see eq 17). This could
be interesting for switching off some even neighbor
interactions that can break sublattice symmetry, but here we
will restrict to the first-neighbor approximation. This
approximation is accurate only in the quasi-static regime,
that is, when the nanoparticles and the distances between them
are small, so kR ≪ 1.
In the next subsections we will consider linear arrays of

nanospheroids. With nanospheres, a linear chain where the
nanoparticles were equidistant would be gapless and equivalent
to the v = w case in the SSH model. However, by substituting
the nanospheres with nanospheroids and adding the
orientation as a degree of freedom, a gap can be opened.

Two Particles/Unit Cell. First we consider the simplest
system that may have a topological gap. This is a linear array
with two particles/unit cell and with a distance between
adjacent particles =R d

2
, with d being the size of the unit cell.

For nanospheroids, the Green matrix of the system would be

i
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{
zzzzzz= +

+
q G

e

e
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0 1

1 0

iqd

iqdu u,A B
(26)

This system is equivalent to the SSH model with
= =v w Gu u,A B

, due to the reciprocity =G Gu u u u, ,A B B A
. This

means that by rotating the spheroidal nanoparticles in a two-
particle unit cell, we can change the amplitude of the bands,
but not open a gap.

Three Particles/Unit Cell. However, if we enlarge the unit
cell, we can open a gap in an array of equidistant particles. Let
us consider a three-particle unit cell with =R d

3
. Then the

Green dyadic’s matrix is
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which is equivalent to the Bloch Hamiltonian of the SSH3
model (eq 7). The condition for the unit cell to be mirror-
symmetric is φA = −φC and = 0,B 2

. The condition for the
unit cell to be inversion-symmetric is, however, less restrictive.
As a single nanospheroid is inversion-symmetric, the only
condition is that particles A and C are inversion-symmetric
with respect to each other, that is φA = φC.
The condition for q( ) to be equivalent to the mirror-

symmetric SSH3 is | | = | |G Gu u u u, ,A B 2 3
. This is satisfied by any

two pairs of angles φA, φB and φB, φC that lay on the same or
opposite contour line in Figure 2d. Explicitly, this occurs for

= ±
±( )arctanB

2(cos cos )

(sin sin )
A C

A C
. This includes mirror symmetric

and inversion symmetric previous conditions. However, it goes
beyond them. For example, if we fix = =0,A C 4

, then the
Green dyadic is accidentally mirror symmetric for φB ∼ 0.43π
and φB ∼ 0.78π.
This accidental symmetry stems from the fact that we are

ignoring the orientation of the nanoparticles in the equations,
so it is a symmetry of the strength of the interaction between
particles. Due to the anisotropy between longitudinal and
transversal modes, these symmetries happen for apparently
random values of the orientations. However, this accidental
symmetry is enough to quantize the Zak phase, as in the true
mirror symmetric and inversion symmetric cases.
In Figure 3 we show the topological transition in this

plasmonic analogue of the mirror-symmetric SSH3 model with
a = 12.5 nm, d = 15a, and = =R a5d

3
. By orienting the

nanoparticles at
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= [ ] =, , , ,n A B C 2
, upper

and lower gaps close when | | = | | = | |G G Gu u u u u u, , ,C A A B B C
, that is,

for φ = ±φt ∼ ±0.16π. For |φ| > φt and | | < | |G Gu u u u, ,C A A B
, the

system is in the trivial phase, while for |φ| < φt and
| | > | |G Gu u u u, ,C A A B

there are edge states in the upper/lower

gaps, which frequency is not fixed at ωspa and depends on the
parameters, because they are not protected by sublattice
symmetry. This makes them more tunable but less robust than
the edge states in the SSH, as they can be more easily pushed
into the continuum and hybridize with bulk states. However,
we expect this kind of edge states to still be robust to weak off-
diagonal disorder, as the edge states from rhombus chains.29

The appearance of these edge states matches the steps in the
Zak phase, shown in panel (e). We also show one of the edge
states of the lower gap for =

30
in Figure 3f, which as we

see inherits the symmetry of the three-way chirality, localizing
in the two sublattices closer to the edge.
Interestingly, the asymmetry of transversal and longitudinal

Green dyadic’s functions can be exploited not just to open a
gap but also to engineer accidental spatial symmetries or to
suppress interaction between particles. This system is therefore
more flexible than the linear and zigzag chains of nanospheres,
allowing to play with symmetries, which yield a response of the
edge states tunable by the external electric field, to be studied
in last section.

Four Particles/Unit Cell. Next, we consider a larger linear

unit cell of four nanoparticles separated by a distance =R d
4
.

For this system, generally, q( ) in the base (A, C, B, D) is

Figure 3. Plasmonic analogue of the mirror-symmetric SSH3 model: periodic chain of three prolate silver nanospheroids per unit cell, with long
spheroidal axes forming angles with the chain direction = = =A B C2

. The dimensions of the nanoparticles are a = 12.5 nm and b = c =

0.4a = 5 nm and the interparticle distance is = =R a5d
3

. (a) Unit cells for =
4
, φ = 0, and =

4
. For any φ, the unit cell is inversion

symmetric. (b) Equivalent tight binding unit cells. Solid and dashed black lines strong and weak hoppings. (c) Plasmonic bands of the periodic
system. Solid lines represent the bands for φ = 0, dashed ones represent the bands for = ,

4 4
and dotted lines are φ = −φt, φt, with φt ∼ 0.16π,

where the lower and upper gaps close and topological transitions occur. (d) Plasmonic spectrum of a finite chain of 99 nanoparticles (33 unit cells).
Bulk states are represented by blue lines, while green curves represent the two pairs of three-way-chiral edge states, that appear between −φt and φt.
Green dot marks the values corresponding to the edge state plotted in panel (f). (e) Zak phase of lower/upper gaps, which matches with the
existence of edge states in panel (d). (f) Lower gap edge state for =

30
. The gradient represents the module of the dipoles in absence of

incident field. Due to the three-way chirality the edge state is localized at the two sublattices closer to each edge.
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This is equivalent to the Hamiltonian of the SSH4 model
(eq 9) with hoppings given by eq 25. As we see, this matrix is
block-antidiagonal, i.e., sublattice symmetric. This is because
there are two sublattices (odd and even sites) with only
intersublattice connections. This symmetry protects the edge
states on the central gap, fixing them at ωspa. These edge states
are indistinguishable from the SSH model ones. However,
SSH4 chains can also host edge states in the lower/upper gaps
which frequency can shift, similar to the edge states from the
SSH3 model studied on the last subsection.
The conditions for this system to be geometrically mirror

(inversion) symmetric are φ1 = ∓φ4 and φ2 = ∓φ3. However,
the only condition for q( ) to be effectively mirror-symmetric
is | | = | |G Gu u u u, ,A B C D

. This is satisfied by any two pairs of φA, φB

and φC, φD that lie in the same or opposite contour line. True
or hidden mirror/inversion symmetries quantize the Zak phase
of all gaps.
In Figure 4 we show a plasmonic analogue of the SSH4

model with a = 12.5 nm, d = 15a, and = =R a3.75d
4

. By
s t a r t i n g f r o m t h e u n i t c e l lÄ

Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= [ ] = + +, , , , , ,n A B C D 2 2
, with φ = 0

(left unit cell in panel (a)) and rotating to =
2
(right unit

cell in panel (a)), two different topological transitions are
crossed. As we see in panels (c) and (d), the first one occurs at

φ = φ t ∼ 0 . 1 2 π =( )t2
, w h e r e

| | = | |G G G Gu u u u u u u u, , , ,A B C D B C D A
and the central gap closes. After

reopening, the edge states (red solid line in panel (d))
disappear (appear). For φ = 0, =G Gu u u u, ,D A B C

and
=G Gu u u u, ,A B C D

, so upper and lower gaps close and its edge
states (green solid line in panel (d)) disappear after the
closing, when <G Gu u u u, ,D A B C

. In panel (e) we show the Zak
phase for all the gaps, which represent the existence of edge
states in each gap. In panel (f) we plot the module of the
dipoles for the edge states in the central and lower gaps.
As we see, the former respects the sublattice symmetry and

is localized only in odd or even sublattices, while the latter has
only zero weight in one of the sublattices.
Interestingly, due to accidental symmetries, in this system

we can also recover the topology of the SSH model. When
=G Gu u u u, ,D A B C

and =G Gu u u u, ,A B C D
(or equivalently, t = v and u

= w in Figure 1c), upper and lower gaps close and we have an
analogue of the SSH model. Even when the period of the real
unit cell is 4R, the effective tight binding unit cell has a period
of 2R.
In Figure 5 we see a possible realization of this analogue of

the SSH for a = 12.5 nm, d = 15a, and = =R a3.75d
4

. By
fixing the direction of the nanoparticles in sites B and D and

rotating A and C as
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= =, , ,n 4 4 4

, with φ

ranging from
4
(left unit cell in Figure 5a) to

4
(right unit

cell), a topological transition occurs at φ = 0 (middle unit cell),
where the gap closes due to all Gu u,i j

being equivalent, as in the
SSH model for v = w (middle unit cell in panel (b)). In this
system there’s also a transition from an inversion symmetric

Figure 4. Plasmonic analogue of the SSH4 model. Periodic chain of four prolate silver nanospheroids per unit cell, with major axes forming angles
with the chain direction = = = =A B C D2 2

. The dimensions of the nanoparticles are a = 12.5 nm and b = c = 0.4a = 5 nm and the

interparticle distance is = =R a3.75d
4

. (a) Unit cells for = =0,
4
, and =

2
. For all values of φ, the unit cell is mirror-symmetric, but for

= 0,
2
it is also inversion-symmetric. (b) Equivalent tight binding unit cells. Solid and dashed black lines represent weak and strong hoppings.

(c) Plasmonic bands of the periodic system. Solid curves represent the bands for = 0,
2
, dashed ones are for =

4
, where lower/upper gaps

close and dotted lines are the bands for φ = φt ∼ 0.12π, at the central gap closing. (d) Plasmonic spectrum of a finite chain of 100 nanoparticles (25
unit cells). Bulk states are represented by blue lines, while red and green lines represent the edge states in the central and lower/upper gaps,
respectively. Red and green dot mark the values corresponding to the edge states plotted in panel (f). (e) Zak phases of central gap (solid red line)
and lower/upper gaps (dashed green line), which match with the number of edge states in panel (d). The Zak phase of the central gap is quantized
by chiral and mirror/inversion symmetries, while the lower and upper gap Zak phases are quantized just by mirror/inversion symmetries. (f)
Central gap (top) and lower gap edge states (bottom) for =

20
and =

6
, respectively. The gradients represent the module of the dipoles in

absence of incident field. Due to sublattice symmetry, the left edge chiral states localize at odd sublattices (A and C), while the right edge state
localizes at even sublattices (B and D), and the four-way chiral edge states are localized in the closest three sublattices to the edge.
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unit cell =( )4
to an accidentally mirror symmetric one

< <( )4 4
to a mirror symmetric unit cell =( )4

, so

the equivalent tight binding unit cells (panel (b)) always
remain mirror symmetric, as in the SSH. We can see the gap
closing and reopening for the bands of the periodic chain.
(panel (c)) and for the finite chain (panel (d)). We also plot
the Zak phase (panel (e)), that compared to the spectrum in
panel (d), we see it represents the existence of edge states (red
lines). After the closing, double degenerate topological edge
states arise at the edges of the chain, localizing in odd
sublattices at the left edge and in even sublattices at the right
edge due to sublattice symmetry. We show one of the edge
states for =

4
in panel (f).

In the next section we will study how these edge states are
excited by an incident electric field, depending on its
polarization.

■ SWITCHING EDGE STATES BY INCOMING
ELECTRIC FIELD

A difference between electronics and plasmonics is that
plasmons are not Fermions, so the bands are not naturally
half-filled. In photonics, we need an incident field that overlaps
spatially with the eigensolutions of the array. Once the incident
field is fixed, by inverting eq 12, the dipoles of the chain are
given by

i
k
jjjj

y
{
zzzz= I tP E( )

1
( )

( , )
1

inc
(29)

Einc being a 3 × N vector that contains the field Einc(t)
evaluated at the position of each nanoparticle. For a chain of
nanospheroids, the equation reduces to

i
k
jjjjj

y
{
zzzzz= I tP E( )

1
( )

( , )a a
a

a
1

inc
(30)

where Einc
a is a vector of the projections of the electric field in

the directions of the major axes of the nanoparticles. Such
projections are key in order to excite or not excite the
protected states. When all the particles in the array are
spherical or oriented in the same direction, the electric fields
affect almost equally all the nanoparticles. However, when
nanoparticles are oriented in different directions, some spatial
symmetries are broken, affecting how an incident electric field
couples to the edge states and allowing switching.
Plasmonic nanoparticle chain edge states are difficult to

observe in experiments mainly due to the small dimension
needed to avoid detrimental long-range effects. Despite these
difficulties, they have been experimentally probed by near-
field47,48 and far-field49 imaging techniques.
Let us analyze what happens when we excite the edge states

of the plasmonic chains. In Figure 6 we plot the dipolar
response to a linearly polarized electric field at normal
incidence, depending on its polarization:

i

k

jjjjjjjjj

y

{

zzzzzzzzz
tE ( , )

cos

sin

0
inc

(31)

where η is the angle of polarization of the electric field with
respect to the x axis. In order for the field to resonate with the
nanoparticles and with the edge state mode, due to the losses
of the nanoparticles, we need the incoming electric field to
have the frequency of the edge state and a finite lifetime, that
is, a pulse.
In Figure 6a−d, we analyze the edge states of the central

gap, which are protected by chiral symmetry. In panels (e)−
(h) we excite the edge states in the lower gap of the SSH4
chain, which are 4-way-chiral-symmetric. For both types, we
consider chains with mirror, inversion, accidental mirror, and

Figure 5. Plasmonic analogue of the SSH model. Periodic chain of four prolate silver nanospheroids per unit cell, with long spheroidal axes forming
angles with the chain direction = =A C 4

and φB = −φD = φ let free. The dimensions of the nanoparticles are a = 12.5 nm and b = c = 0.4a = 5

nm, and the interparticle distance is = =R a3.75d
4

. (a) Unit cells for = , 0,
4 4

. (b) Equivalent tight binding unit cells; the effective unit cells
are dimeric, as in the SSH model. Solid and dashed black lines represent strong and weak bonds. (c) Plasmonic bands of the periodic system. Solid
curves represent the bands for = ±

4
, while dashed ones represent the bands for φ = 0, at the gap closing. (d) Plasmonic spectrum of a finite

chain of 100 nanoparticles (25 unit cells). Bulk states are represented by blue lines, while red lines represent the pair of edge states, that appear after
the gap closing at φ = 0. Red dot marks the values corresponding to the edge state plotted in panel (f). (e) Zak phase of central gap, which matches
the number of edge states in panel (d). (f) Edge state for =

4
. The gradients represent the module of the dipoles in absence of incident field.

Due to sublattice symmetry, the left edge state is localized at odd sublattices (A and C), while the right edge state is localized at even sublattices (B
and D).
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no spatial symmetries to see how this affects the optical
response.
In Figure 6a we see the response of the SSH nanospheroid

chain with mirror symmetry and = [ ]1, 1, 1, 1n 4
to a

linearly polarized electric field at the frequency of the surface
plasmon ωspa, depending on its polarization. Since all the
nanoparticles are oriented at diagonals when the field is
polarized in x or y directions =( )0,

2
, all the particles are

equally perturbed so mirror symmetry holds and left and right
edge states are identical.
However, when we apply an electric field oriented at

0,
2
, the interaction with the external field depends on the

nanoparticle. The sublattice symmetry is still preserved, as we
see in Figure 6a. However, the external field breaks the mirror
symmetry, allowing to have a different response at left and

right edges. For
7( )6

7
, the dipolar response is

localized only at the left (right) edge. Then, by changing the
polarization of the field, we can select left, right, or both edge
states with the same or different weight.
Now if we apply a circularly polarized electric field at normal

incidence, this is

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz
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t

tE ( , )

cos( ( ))

sin( ( ))

0

inc

(32)

The nanospheroids convert the circular polarization of the
incoming field to linear polarization. Then, the oscillations in
left and right edges are not in phase, so the edge states “bounce
back and forth” between left and right edges. Over a period T,
the response of the chain loops two times over the η axis in
Figure 6a.

Figure 6. Excitation of edge states of different plasmonic chains by an incoming linearly polarized electric field at normal incidence, depending on
its angle of polarization η. We plot the module of dipolar moments at each site pi, normalized by its maximum value for all polarizations and sites.
We use red and green gradients for chiral (central gap) in panels (a)−(d) and generalized 4-way chiral (lower gap) edge states in panels (e)−(h).
As insets, we plot the spectra of the chains, where blue, red, and green dots represent bulk states, central gap edge states, and lower/upper gap edge
states. (a) Mirror symmetric unit cell (see Figure 5), = [ ]1, 1, 1, 1n 4

. The chain breaks the inversion symmetry, while incident electric field

breaks mirror symmetry (except for η = 0 and η = π), allowing to switch off left or right edge states separately for
7
and 6

7
. Then, when

applying a circular incident electric field, edge states bounce back and forth between the edges. (b) Inversion symmetric unit cell,Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= + 0, , , 0n 20 2 2
. Electric field does not break inversion symmetry, but allows to switch on and off both edge states simultaneously. (c)

Accidentally mirror symmetric unit cell,
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= , , ,n 7 4 7 4
. As both true mirror and inversion symmetries are broken, both the amplitude and

phase of the excited edge states differ. (d) Nonspatial-symmetric unit cell,
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= + 0, , , 0n 20 5 2
. As left−right edge states are still degenerate due

to chiral symmetry, we have a response for both edges similar to case (c). (e) Mirror symmetric unit cell,.
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= , , ,n

4
9 2 2

4
9
, (f) Inversion

symmetric unit cell,
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= 0, , , 0n 4 4
. (g) Accidentally mirror symmetric unit cell,

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= 0, , , 0.71n 4 4
). (h) Nonspatial-symmetric unit cell,

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= 0, , , 0.8n 4 4
). Due to the absence of symmetries, left and right edge states are not degenerate and can be excited separately.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.2c01526
ACS Photonics XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acsphotonics.2c01526?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c01526?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c01526?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c01526?fig=fig6&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://doi.org/10.1021/acsphotonics.2c01526?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


However, when the chain is inversion-symmetric, for

example, the one in panel (b)
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= +( )0, , , 0n 20 2 2
, the

electric field preserves this symmetry, so the response in both
edges is the same. We can switch on/off both edge states
simultaneously. If the electric field is circularly polarized, then
the oscillations in both edges are in phase.
When the chain is accidentally mirror-symmetric (panel (c),Ä

Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= , , ,n 4 4 4 7
), or has no spatial symmetries (panel

(d),
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= + 0, , , 0n 20 5 2
), the field couples more intensely

to one of the edges. If we apply a circularly polarized electric
field, the oscillations in the edges would not be just dephased
as the bouncing states in the mirror symmetry chain, but they
would differ also in amplitude.
For the edge states in lower (or upper) gaps, however, we

find a different scenario. In a mirror symmetric SSH4 chain

(panel (e),
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= , , ,n

4
9 2 2

4
9
), the external field does not

appear to break the symmetry between edges. This may be due
to the coexistence of generalized chiral symmetry and spatial
symmetries. This means that we cannot select right or left
edges. If the field is circularly polarized, then the oscillations in
both edges are in phase. The same occurs for an inversion-
symmetric unit cell (panel (f),

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= 0, , , 0n 4 4
) and in the

accidentally symmetric case (panel (g),
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= 0, , , 0.71n 4 4
).

Finally, if the SSH4 unit cell has no spatial symmetries
(panel (h),

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ= 0, , , 0.8n 4 4
), left and right lower/upper

gap edge states are no longer degenerate, so we can excite
them separately at different frequencies. Due to the breaking of
the degeneracy, these edge states may be more easily pushed
out of the gap by disorder and hybridize with bulk states.
As we see, by orienting elongated nanoparticles, we have

gained control in edge states, making possible to switch them
off, select left, right, both, or bouncing edge states. This is not
feasible in the nanosphere chain, as each single particle has an
isotropic response for all the polarizations of the electric field.
Here we have studied equidistant chains to show a gap can be
opened by orientation in an otherwise gapless system;
however, this degree of freedom can be exploited in more
complex arrays. The extension to 2D lattices will lead to more
interesting effects.

■ CONCLUSIONS
In previous years, there have been several proposals to mimic
topological electronic systems in photonics. Periodic arrays of
metallic nanoparticles are an interesting platform to study
topology in nanophotonics due to their plasmonic resonances
in the visible range and their tunability. Here we have proposed
means to open a topological gap not by rearranging the
particles in an array as in crystalline topological electronic
systems, but by orienting elongated particles. By adding this
degree of freedom, we can mimic topological chains as the
SSH model or its greater unit cell extensions in an equidistant
array. The spatial polarization modulation allows also to switch
on/off or select right, left, or bouncing edges states, by
changing the polarization of the incoming electric field, as in
the zigzag plasmonic chain. However, orientation of elongated
nanoparticles in arrays also makes possible the suppression of
the interaction between nanoparticles, to control and engineer

spatial symmetries and filter modes. This opens a path toward
exploiting features of nanoparticles for topology without a
counterpart in condensed matter systems.
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