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Abstract

In the past decades, we have witnessed the rapid growth of plasmonics, which is a field
investigating the properties and applications of surface plasmon polaritons. Two key features
of plasmons are that they enable us overcome the diffraction limit and they provide large field
enhancement on the surface of metals. However, traditional surface plasmon polaritons have
some significant drawbacks, such as high loss and low tunability. Fortunately, new materials
with plasmon-like behaviour, such as graphene and silicon carbide, have recently been found
both theoretically and experimentally. Compared to traditional plasmonic materials, those new
materials exhibit low loss and high tunability and work at mid-infrared frequencies, significantly
expanding this field. However, the coupling between different plasmon-like behaviours in those
new materials has been largely unsuccessful to date.

In this thesis, we investigate the coupling between the localized surface phonon polaritons of
silicon carbide and surface plasmon polaritons of graphene, by studying the tunable plasmonic
cavities working at the mid-infrared frequencies, using a monolayer of graphene deposited on a
silicon carbide grating. Models for graphene plasmonic cavities are established to reveal the
underlying physics. We first focus on a simple model by considering a Fabry-Pérot model in
the horizontal cavity direction, in which the commonly used dispersion relation of graphene
plasmons is applied. Then, we improve the model by deriving a new dispersion relation,
revealing the cavity height dependence of the dispersion relation of graphene plasmons. A
Fabry-Pérot model in the vertical cavity direction is also established. Last, we establish the
model of the suspended graphene plasmon cavities based on the newly derived relationship. In
addition, we realize several interesting features by optimizing the proposed system, such as
complete absorption, extremely high field enhancement and extraordinary field compression.
All these models are confirmed by the numerical simulations.
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Introduction

1.1 General Introduction
Plasmonics is an emerging sub-discipline of nano-photonics that allows the full manipulation
of light at the nanoscale via plasmons [1–4]. Surface plasmon polaritons (SPPs) arise due
to the strong coupling of photons and charge systems. They generally exist on the surface
of conductive materials (such as metals, highly doped semiconductors, graphene). SPPs can
be categorised into two groups [5–7]: One is called propagating SPPs, which exist in one-
dimensional (such as the surface of a metallic nanowire) and two-dimensional systems (such as
the interface between a dielectric and a metal), and their electromagnetic energy propagates in a
certain direction. Another one is called localized SPPs, which primarily exist on the surface of
zero-dimensional systems, such as the surface of a metallic nanoparticle. In this case, SPPs are
confined in three directions, and hence the electromagnetic energy cannot be transmitted.

Unlike ordinary optical phenomena, SPPs possess some preeminent optical properties, such as
selective scattering of light and extreme field enhancement. It is particularly noteworthy that the
diffraction limit can be overcome because the sub-wavelength confinement of electromagnetic
waves can be realized by using SPPs [6, 8, 9]. A large number of studies have shown that these
distinct optical properties enable SPPs to have promising prospects for applications in the fields
of biology, chemistry, energy, and information, including single molecule sensors [6, 10, 11],
efficient solar cells [12–14], metasurfaces [15, 16] and photonic integrated circuits [17, 18].
Previously, this field mainly investigated the optical properties of SPPs on noble metallic
materials (such as gold and silver), especially their excitation techniques, propagation and loss
properties, manipulation approaches, and potentials in applications [6, 19–21]. It should be
noted that the operating frequencies of SPPs on metals are at the visible and near infrared bands.

However, the traditional SPPs on metals represent some drawbacks: On the one hand, there is a
trade-off between the confinement ability of electromagnetic field and the loss when using lossy
materials. Usually, the smaller the confinement dimension, the larger the loss, and vice versa.
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24 Introduction

Certainly, miniaturized integrated optical systems are expected. At present, the characteristic
scale of the device has reached dozens of nanometers, about one tenth of the wavelength of
visible light. With such a small scale of the confinement, the loss is bound to be very large. How
to effectively reduce the loss of SPPs has become an urgent problem in plasmonics. Approaches
based on the dynamic modulation depend entirely on the adjacent functional materials (such as
quantum dots, liquid crystals and other electro-optic materials). However, this greatly increases
the difficulty of fabrication and instability of the integrated system.

Graphene plasmons (GPs) offer us the ability to solve the mentioned problems, thanks to the
fact that the properties of GPs are significantly different from the traditional SPPs on metals
[22–30], because graphene has a special electronic band structure, GPs exhibit unique electrical
tunability [31,32], low intrinsic loss [33,34] and high field confinement [35,36]. The resonance
frequencies of GPs are continuously tunable from mid-infrared to terahertz [37], thus greatly
expanding the range of operating frequency of plasmons. These properties make GPs have a
high potential in a range of applications [38] (as shown in Figure 1.1), including the fields of
bio-chemical sensors, active devices, spectroscopy and infrared/terahertz detection. In addition,
silicon carbide (SiC), as an exemplary polar dielectric, exhibits a plasmon-like behaviour known
as surface phonon polaritons (SPhPs), which operate at mid-infrared frequencies. However,
coupling GPs and SPhPs have been largely unsuccessful to date.

In this thesis, we focused on this issue and the key targets are summarized as follows: First,
we attempted to couple the localized SPhPs of SiC with SPPs of graphene, and to create
tunable plasmonic cavities in the mid-infrared range. Second, we established models for those
plasmonic cavities and reveal the physics behind. Third, we tried to reveal the insufficiency
of current theories and to improve them by introducing necessary corrections. Fourth, we
anticipated realizing several interesting features by optimizing the proposed system, such as
complete absorption, extremely high field enhancement and extraordinary field compression.

1.2 The Electromagnetism Theory
Nanophotonics is the study of the interaction between the electromagnetic fields with the materi-
als on the nanometer scale. All findings reported here belong to a major part of nano-photonics,
namely plasmonics. Plasmonics provides us the ability to confine the electromagnetic waves
over the sub-wavelength dimensions, based on the interaction between the electromagnetic
fields with the free charge carriers in conductors. In this section, we will first review the
mathematical description of optics, Maxwell’s Equations. Subsequently, we will summarize the
permittivity and the permeability of materials. The classical model for metals, the Drude model,
will also be derived from the Drude-Lorentz model in this section.
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Figure 1.1: Overview of applications using graphene.

1.2.1 Maxwell’s Equations

Maxwell’s equations are concise equations that are used to model the interaction between elec-
tromagnetic waves and matter. Their establishment was one of the most important achievements
of the 19th century. Although based on the efforts of a number of physicists, these equations
are summarized by the physicist and mathematician James Clerk Maxwell, and establish the
foundation of the classical electromagnetic theory.

There exist two major variants - the microscopic and the macroscopic Maxwell’s equations. The
microscopic formulation relates the fields (the electric field E and the magnetic induction B) to
the total charge and current in the system, so it has the universal applicability. However, it is
very difficult to be directly used in the calculations, because of the complexity of the calculation
of the total charge and current that include the ones at the atom scale. The macroscopic
formulation avoids this calculation complexity by introducing two new auxiliary fields (the
electric displacement D and the magnetization field H). We summarize the macroscopic
Maxwell’s equations in the differential form here
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∇ ·D(r, t) = ρext(r, t), (1.1)

∇ ·B(r, t) = 0, (1.2)

∇× E(r, t) = −∂B(r, t)
∂t

, (1.3)

∇×H(r, t) = Jext + ∂D(r, t)
∂t

, (1.4)

where ρext(r, t) is the external charge density, and Jext is the external current density. Equations
(1.1) to (1.4) represent Gauss’ law for the electric field (which is also known as Gauss’ flux
theorem), Gauss’ law for the magnetic field, Faraday’s law, and Ampère’s law, respectively.
Gauss’ law reflects that the electric field originates from a source, that is, it describes the
properties of the electric field. Similar to Gauss’ law for electric field, Gauss’ law for magnetic
states that magnetic monopoles do not exist and describes the properties of magnetic field.
Faraday’s law demonstrates that a time-varying magnetic field generates an electric field,
while Ampère’s law indicates that a time-varying electric field generates a magnetic field via
introducing the displacement current hypothesis by Maxwell. Maxwell’s equations show that
the electric field and magnetic field are not isolated from each other. The varying magnetic field
can generate the vortex electric field, and vice versa. The varying electric and magnetic fields
are always closely linked and generate each other to form the electromagnetic field as a whole,
which is also the basic concepts of Maxwell’s equations and the core idea of electromagnetics.
Maxwell’s equations predicate the existence of electromagnetic waves. From the point of
view of future generations, the greatest contribution of these equations is to clearly reveal how
electromagnetic waves propagate in space.

The auxiliary fields can be related to the electric and magnetic fields via the constitutive relations.
Although the form of these relations is dependent on the properties of the materials applied, the
form for the homogeneous isotropic material is simple as follows

D = ε0E + P = εε0E, (1.5)

H = 1
µ0

B−M = 1
µµ0

B, (1.6)

where P is the polarization of the material, and M is the magnetization of the material, ε0 is the
vacuum permittivity, µ0 is the vacuum permeability, ε is the relative permittivity of the material
and µ is the relative permeability of the material. It should be noted that the International System
of Units are applied in this thesis and that all materials used are non-magnetic (µ = 1), and
hence the refraction index n equals to

√
ε. Furthermore, we can relate the relative permittivity
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and the relative permeability to the electric (χ) and magnetic (χm) susceptibilities (which are
used to describe the degree of the change of a matter under the an external electric and magnetic
fields) via

ε = 1 + χ, (1.7)

µ = 1 + χm. (1.8)

The permittivity and permeability will be further interpreted in the following section. In this
thesis, the relative permittivity and the relative permeability will be called the permittivity and
the permeability for short.

1.2.2 Helmoltz Equation and Boundary Conditions

Maxwell’s equations form the foundation of the electromagnetism and hence the classical
plasmonics. In the following, we will derive the wave equation based on Maxwell’s equations
considering the homogeneous material cases without external charge (ρext = 0) and current
(Jext = 0) densities. Applying the vector identity∇×∇× E = ∇(∇ · E)−∇2E, we obtain
the core formula of the electromagnetic wave theory

∇2E− ε

c2
∂2E
∂t2

= 0, (1.9)

where c = 1
√
ε0µ0

is the light speed in vacuum. Considering the time-harmonic dependence of

the electric field (where E(t) = E0e
−iωt, thus

∂

∂t
= −iω), we obtain the so-called Helmoltz

equation for monochromatic waves in the homogeneous isotropic medium with the permittivity
of ε

∇2E + k2
0εE = 0, (1.10)

where k0 = ω

c
represents the wavevector in vacuum with the angular frequency ω.

Maxwell’s equations can be used to describe the behaviour of electromagnetic fields in the non-
homogeneous medium (where the permittivity and permeability should be spatially dependent).
However, we usually consider homogeneous media as mentioned. This begs the question: How
to describe the behaviour of electromagnetic fields across the interface between two materials?
Boundary conditions provide the answer. Considering the interface between a medium i and a
medium j, the boundary conditions reads

Ei
t − Ej

t = 0, (1.11)

Hi
t −Hj

t = Js × n, (1.12)



28 Introduction

where n represents the normal vector of the interface from medium j to medium i, Ei
t and Hi

t

(Ej
t and Hj

t ) represent the tangential components of the electric field and the magnetic field
in medium i (medium j), and Js represents the surface current density at the interface. The
surface current density can be related to the electric field via the conductivity σ

Js = σE. (1.13)

Therefore, we could obtain the simplified equations of boundary conditions

Ei
t = Ej

t , (1.14)

Hi
t −Hj

t = σEi × n. (1.15)

Boundary conditions tell us that the tangential components of the electric field E and the
magnetization field H must be continuous across the boundary when the surface current density
does not exist. This is valid when dielectrics are considered. In this thesis, the graphene layer
can be modelled as a surface with a complex surface conductivity, which means the surface
current density should be considered.

Indeed, the Helmholtz equation and boundary conditions are very important for the numerical
calculation in optics. Understanding these equations also helps us to derive the analytical
expression for the phenomena of interest. In the following part of this thesis, both approaches
will be used.

1.2.3 Permeability and Permittivity

As can be seen in the constitutive relations (Equations (1.5) and (1.6)), permittivity is used to
measure the degree of the polarization of a material in response to an applied electric field,
while permittivity is employed to describe the ability to establish a magnetic field inside of a
medium when a medium is magnetized. In order to explain the physics behind the permeability
and permittivity of a medium, several models were proposed. Among them, the Drude-Lorentz
model is the most important and the most commonly used one. In the following, we will focus
on this model and its derivative model.

1.2.3.1 The Drude-Lorentz model

In this section, we will briefly describe the derivative process of the Drude-Lorentz model using
a classical method. We begin by considering an intuitively familiar system - a mass on a spring
system. In order to account for loss, we will explicitly put a damper in the system. It turns out
that this intuitively familiar system is an extremely good analogy to an electron cloud around
a nucleus. In the mass-spring system, we could pull on the mass, and stretch the spring. In
the electron-nucleus system, an electric field could be applied to put electric forces on charge
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carriers, and hence push the nucleus in one direction and push electric cloud to the opposite
direction, due to the opposite charges they have. Therefore, this electron cloud is stretched just
like the mass on the spring when the mass is pulled on. If we release the mass on the spring, the
mass would bounce back, and pull back and forth around the equilibrium position. Similarly,
if we were to let go of that electron cloud, it would slosh back and forth on either side of the
nucleus, and it would be resonant. Similar to the equation for the mass-spring system, we can
reduce the equation of motion for the electron-nucleus system as follows

Figure 1.2: Schematic representation of Lorentz oscillator model: In the mass-spring system, a solid
object with a finite mass is suspended on a spring. The spring is held by the base. A damper also exists
between the base and the solid object. This system is an analogy of an electron-nucleus system. In the
electron-nucleus system, there are an electron cloud and an atom nucleus. The electron cloud is marked
in gray, while the nucleus is marked as a little red ball. When there is no applied electric field, the
electric cloud is symmetric around the nucleus. However, the electron-nucleus system will be polarized
in response to an applied electric field.

m
∂2r
∂t2

+mΓ∂r
∂t

+mω2
0r = −qE (1.16)

where the first term represents the acceleration force, the second term represents the frictional
force, the third term represents the restoring force, the term on the right side of the equation is
the driving force, the electric force, r is the distance of the charge from the center, m ≡ me
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is the mass of an electron, Γ is the damping rate, ω0 =
√
K

m
is the natural frequency, and

q = qe is the charge of a electron. This equation can be solved by applying a Fourier transform
to transform this time-domain equations to a frequency-domain equation: Considering the

time-harmonic dependence of the electric field (E(t) = E0e
−iωt, thus

∂

∂t
= −iω) and the

similar form of the displacement of the electron (r(t) = r0e
−iωt), we can rewrite the equation

in the following form with the explicit expression of the frequency dependence

(−mω2 − iωmΓ +mω2
0)r(ω) = −qE(ω) (1.17)

which leads to the displacement

r(ω) = − qe
me

E(ω)
ω2

0 − ω2 − iωΓ . (1.18)

The displacement is now described in terms of the driving electric field and the Lorentz
parameters and can be interpreted as follows: When there is no electric field, the electron cloud
fills around the nucleus and has a symmetric distribution. However, the nucleus gets pushed
one way and the electron cloud gets pushed another when an electric field is applied. The
overall displacement of the cloud is what we are calling r(ω) here. Therefore, we conclude
that the electric dipole moment of the charge displaced by r should be −qer. According to the
definition, the Lorentz polarizability α(ω) for a single atom reads

α(ω) = q2
e

me

1
ω2

0 − ω2 − iωΓ . (1.19)

It should be bear in mind that the polarizability of anisotropic materials should be a tensor. For
simplicity, the scalar form is still employed here. Given that the total electronic polarization Pe

of the material is defined as the volume averaged dipole moment, the material polarization reads

Pe(ω) = −Nqer = ε0χ(ω)E(ω), (1.20)

where N represents the number of atoms per unit volume. This equation leads to the suscepti-
bility considering Equation (1.18)

χ(ω) =
ω2
p

ω2
0 − ω2 − iωΓ . (1.21)

Therefore, the displacement field reads as follows by considering the relation between the
polarization and the applied field

D(ω) = εε0E(ω) = ε0E(ω) + Pe(ω) = ε0(1 + χ(ω))E(ω). (1.22)
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Thus, the permittivity of a material with a single resonance is

ε(ω) = 1 + χ(ω) = 1 +
ω2
p

ω2
0 − ω2 − iωΓ , (1.23)

where ωp (ω2
p = Nq2

e

ε0me

) is called the plasma frequency. This model also has another name, the

Lorentz model, and has a characteristic feature of a harmonic oscillator with damping meaning
ε(ω) is a complex value. There are two special cases that we are particularly interested in: The
first one is used to describe the response of the conduction electrons in metallic materials, while
the second one is applied to represent the optical photon effect on the permittivity of the polar
dielectrics.

Although we have fully derived the permittivity in the Drude-Lorentz model, I still want
to mention another commonly used form of it, and show the difference in the derivation
procedure. When considering the polarization associated with the static ion cores background,
the polarization of the medium will become

D(ω) = εε0E(ω) = ε0E(ω) + Pe(ω) + Pback(ω), (1.24)

where the Pback(ω) = (ε∞− 1)ε0E(ω) is the background polarization associated with the static
ion cores, and ε∞ is the permittivity at high frequency. Consequently, the permittivity in the
Drude-Lorentz model reads

ε(ω) = ε∞ +
ω2
p

ω2
0 − ω2 − iωΓ . (1.25)

Equation (1.25) model a real material, while Equation (1.23) describes an ideal free-electron
material. In real materials, such as noble metals (Au and Ag), when the frequency is larger than
the plasma frequency (ω > ωp), a high polarized background caused by the filled d band exists.
Thus the background polarization should be added, while the Pe represents the polarization
associated to the free electrons (the free s electrons in this case). Therefore, the permittivity
at high frequency exists, and usually the value of ε∞ is between 1 and 10. However, in ideal
free-electron materials, the polarized environment is ignored, and therefore ε∞ = 1, when
ω > ωp. In the following part of this thesis, both of the expression are used. Please be careful
about which one is applied.

It also should be noted that a Drude-Lorentz model for permeability has the same format as the
one for permittivity
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µ(ω) = µ∞ +
ω2
mp

ω2
m0 − ω2 − iωΓm

(1.26)

where all the parameters have the similar name: ωmp is the magnetic plasma frequency, ω0p is
the magnetic resonance frequency, Γm is the magnetic damping rate, and µ∞ is the permeability
at high frequency. In most cases, only non-magnetic materials are considered.

The Drude-Lorentz model provides a good explanation for the physics behind the behaviour
of the permeability and permittivity in a medium. However, there are many possibilities for
the plasma frequency in the real atoms, because there are tens of electron levels. In addition
to the electron transitions, many other sources of resonances exist. All these resonances can
be modelled in the Drude-Lorentz model. Therefore, the generalization of the Drude-Lorentz
model should include all these mechanisms. Indeed, the general Drude-Lorentz model is in a
summation form. This is out of the scope of this thesis, and will not be included here.

Besides, it should be noted that the permeability and the permittivity are fundamentally tied to
Maxwell’s equations as the constants included in Maxwell’s equations. However, the refractive
index and the impedance of a material are indeed more intuitive parameters that really tell us
what happens when a wave propagates in a medium.

1.2.3.2 The Drude model

The Drude model is a special case of the Drude-Lorentz model. In metals, most electrons move
freely because they are not bound to the nucleolus. As a result, the restoring force in Equation
(1.16) can be regarded as a negligible force. Therefore, we come to the well-know Drude model
(from Equation (1.25)) for metallic materials by assuming ω0 = 0

ε(ω) = ε∞ −
ω2
p

ω2 + iωΓ (1.27)

where we use the definition the plasma frequency ω2
p = Nq2

e

ε0m∗e
, N represents the electron density,

and m∗e represents the effective mass of the electron, the damping rate Γ is called collision

frequency that can be expressed as
2π
τD

, and τD is the collision time. The Drude model has been

widely used, because it is an accurate description of the optical property of the metallic material,
except the spectral region where the interband transition should be considered. It reveals the key
features of the permittivity of a metal: When the frequency is smaller than the plasma frequency,
the real part of the permittivity is negative, and hence the incident light is strongly reflected.
However, the material behaves like a traditional dielectric when the frequency is larger than the
plasma frequency. When the ideal free-electron material model (ε∞ = 1) is considered and the
attenuation is neglected (Γ = 0), the Drude model can be deduced to the following form



1.3 Surface Plasmons 33

ε(ω) = 1−
ω2
p

ω2 . (1.28)

This equation will be used to derive the key features of SPPs on metals in the following of this
thesis.

1.3 Surface Plasmons
In this section, we will summarize the most important facts and phenomena in plasmonics,
when using traditional plasmonic materials. The famous dispersion relation of SPPs at a single
interface will be also presented here.

1.3.1 Polaritons

Polaritons are the collective excitations and are an emergent phenomenon that forms when
photons couple strongly with electric or magnetic dipole-carrying excitations in solids. As can
be seen from an example shown in Figure 1.3, the dispersion relation in this process follows the
anti-crossing principle, which forms two different branches in the dispersion curves, namely
upper and lower polariton branches, respectively. The anti-crossing points occurs due to the
strong interaction of the sub-systems (the photons and the charged excitations) in the whole
system. Two different branches represent two distinct kinds of modes: The upper branch above
the light line in free space has smaller wavevectors representing unbound or radiative modes,
while the lower branch below the light line corresponds to the bound or surface polariton modes.
In the perspective of the dielectric theory, the electromagnetic fields with the frequency in the
upper branch feel the medium as transparent material.

The surface polariton modes would be more interesting, and are usually accompanied by strong
resonance and therefore strong absorption. Those modes, and therefore all the physics, are
tightly bound to the interface between the dielectric and metallic materials. We could be
inspired by considering the characteristic skin depth, δc, of a metal under Drude model at the
low frequencies

δc ∼
1√

2σ0ωµ0
. (1.29)

where σ0 = Nq2
eτD
m∗e

. This indicates those surface polariton modes are confirmed on the surface

of metals. Such modes will be discussed further in the following sections.



34 Introduction

Figure 1.3: Dispersion relation of a typical kind of polaritons – surface plasmon polaritons: There
exist three different modes. However, there are two branches that can be reflected in the dispersion
curves. The upper branch corresponds to the radiative modes. In this spectral region, Re{εm} > 0,
and hence both kx and kz are real numbers. The lower branch represents the bound modes. In this
spectral region, Re{εm} < −εd, and hence kx are a real number, while kz is an imaginary number.
The middle spectral regtion corresponds to quasi-bound modes, where kx is purely imaginary, because
−εd < Re{εm} < 0. εm and εd are the permittivities of metal and dielectric that consist of the system.
The system configuration is shown in Figure 1.4.

1.3.2 Surface Plasmon Polaritons

Before the exposition of GPs, traditional SPPs, arising due to collective oscillations of free
charge carries in conductors [1, 39], at a single interface in a multilayer system will be also
brief presented here to understand the physical insight of these bound modes. Because SPPs
are able to achieve sub-wavelength confincement, they have attracted significant interest [6, 9].
Understanding the principle of traditional SPPs helps us to comprehend the properties of GPs.

The simplest plasmonic system is a two-dimensional geometry consisting of two semi-infinite
space with two different materials, dielectric (upper semi-space) and metal (lower semi-space),
as shown in Figure 1.3. The relative permittivities and permeabilities are εi and µi, respectively,
where i = 1, 2 represent dielectric (ε1 > 0) and metal, respectively. Let us recall that the
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following assumptions are used without specification in this thesis, unless otherwise stated: The
electromagnetic fields are assumed to have a harmonic time dependence (E(t) = E0e

−iωt, thus
∂

∂t
= −iω), and the spaces occupied are source-free regions (Jext = 0), and all materials used

are non-magnetic (µi = 1). Given that the surface polariton mode is confined to the interface
of the two materials and decaying in the perpendicular z-direction, we assume that a wave

propagates along the x-direction in the XOZ plane (
∂

∂x
= iβ) and confined to the surface

at z = 0. The electric field is assumed to have the form E(x, y, z) = Eze
iβx, where β has

a complex value and is named the propagation constant corresponding to the x-component
of the wavevector (kx). Certainly, the light could be decomposed into two polarizations: the
transverse electric (TE) polarization and traverse magnetic (TM) polarization. We will consider
each polarization individually.

Figure 1.4: Configuration of single interface system: There exist two semi-spaces. The upper one
consists of a dielectric with the permittivity εd, while the lower one consists of a metal with the
permittivity εm. However, in order to deal with the general case, we consider ε1 and ε2 here representing
the permittivities of the media. The system is homogeneous in the y-direction.

Let us first consider the possibility of a TM solution. For TM polarized mode, the magnetic field

is parallel to the interface. In consideration of the homogeneity in the y-direction (
∂

∂y
= 0), the

non-zero components of the electromagnetic fields are as follows: In the upper space (z > 0),

Ex = iA2
1

ωε0ε2
kz2e

iβxe−kz2z, (1.30)

Hy = A2e
iβxe−kz2z, (1.31)

Ez = −A1
β

ωε0ε2
kz2e

iβxe−kz2z, (1.32)

and in the lower space (z < 0)

Ex = −iA1
1

ωε0ε1
kz1e

iβxekz1z, (1.33)
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Hy = A1e
iβxekz1z, (1.34)

Ez = −A1
β

ωε0ε1
kz2e

iβxekz1z, (1.35)

where kzi (i = 1, 2) is the z-component of the wave vector in the two spaces and is positive
(since we explicitly take the signage in those equations), and A1 and A2 are the amplitude of
y-component of the magnetization fields in the upper and lower spaces. Based on this set of
equations, we find that all fields are evanescent waves, which means they are confined to the
interface.

According to the boundary conditions at the interface (z = 0), we conclude

A1 = A2, (1.36)

and
kz2
kz1

= −ε2
ε1
. (1.37)

Given that kz1 and kz2 are both positive, we deduce that the real parts of ε1 and ε2 are with
opposite signs (Re{ε1} < 0 and ε2 > 0). That means that the SPPs only can exist at the
interface between two materials with permittivities having opposite signs. The best-known
interface is the one formed between a dielectric (ε1 = εd) and a metal (ε2 = εm).

Based on Equation (1.10), the generic wave equation for TM polarized light is deduced

∂Hy

∂z2 + (k2
0ε− β2)Hy = 0. (1.38)

Hence, the following relations are derived when Equation(1.38) is fulfilled

k2
z1 = β2 − εdk2

0, (1.39)

k2
z2 = β2 − εm(ω)k2

0, (1.40)

Combining Equations (1.37), (1.39) and (1.40), we come to the most famous dispersion relation
of SPPs at a single interface

β = k0

√√√√ εm(ω)εd
εm(ω) + εd

(1.41)

The calculated dispersion relation of SPPs is shown in Figure 1.3. Here, the x-component
(kx) of the wavevector refers to β. In the lower branch, when the frequency is very small, the
dispersion curve is close to the light line indicting that the SPP acts as a photon. However, the
dispersion curve bends over with the increase of the frequency, and asymptotically reaches a
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frequency limit. This frequency limit is named the surface plasma frequency ωsp, and it located
at the frequency when beta reaches an extremum and hence Re{εm(ωsp)} = −εd. We then
apply the Drude model in Equation (1.28) to estimate the permittivity of a metal, and hence the
surface plasma frequency reads

ωsp = ωp√
1 + εd

. (1.42)

This equation shows clearly that the surface plasma frequency is below the (bulk) plasma
frequency.

Then, we move on to the TE polarized modes. With the similar analysis, we could conclude
that the electromagnetic fields in a TE solution read as follows: In the upper space (z > 0),

Ey = A2e
iβxe−kz2z, (1.43)

Hx = −iA2
1
ωµ0

kz2e
iβxe−kz2z, (1.44)

Hz = A2
β

ωµ0
eiβxe−kz2z, (1.45)

and in the lower space (z < 0)

Ey = A1e
iβxekz1z, (1.46)

Hx = iA1
1
ωµ0

kz1e
iβxekz1z, (1.47)

Hz = A1
β

ωµ0
eiβxekz1z (1.48)

According to the boundary condition, the following equation need to be satisfied

A1(k1 + k2) = 0. (1.49)

Because the real part of both wavevectors is positive, this condition is guaranteed only when
A1 = 0. As a consequence, it is impossible to exist the TE mode at the air-metal interface.
However, it should bear in mind that it is indeed possible to stimulate TE modes when magnetic
materials are applied.

It is worth noted that the key advantages of SPPs: First, the field on the metal surface is enhanced,
which could benefit molecular detection, such as surface-enhanced Raman spectroscopy [40,41].
Second, the field is confined on the surface beyond the diffraction limit, which is useful for the
integrated optical systems [42].
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1.4 Numerical Algorithms
Mie theory provides an analytical approach to investigate the plasmonic behaviour of resonators
in very simple geometries, such as spheroidal resonators, however, it fails to provide analytical
solution for more complicated geometries. Fortunately, with the ever-increasing computational
power, those complex problems could be solved using the powerful numerical techniques. Two
numerical techniques, namely Finite-Difference Time-Domain (FDTD) and Finite Element
Method (FEM), are the most widely used, due to their robustness and flexibility. In this thesis,
two commercialized packages, Lumerical FDTD solutions (a commercial FDTD package) and
COMSOL Multiphysics (a commercial FEM package), are employed.

1.4.1 Finite Difference Time Domain

The main concept of the FDTD method is to numerically solve Maxwell’s equations based on
the finite-difference approximation in time domain for the user-defined problems [43–46]. In
other words, FDTD method evolves the electric and magnetic fields by iterating Maxwell’s
equations in small time steps. The simulation region usually contains a light source, which
emits a pulse over the frequency range of interest. In FDTD algorithm, the electric and magnetic
fields are updated at alternating time steps until a steady state is obtained. Therefore, FDTD
algorithm could provide intuitively the process of how the light interacts with a device, as
compared to other numerical techniques. The fields are recorded as a function of the time by
monitors. The corresponding results in the frequency domain could be easily extracted via
performing a Fourier transform on the recorded data.

There are several significant advantages to this technique. First, FDTD benefits for modelling
complicated structures with a large volume. Second, being a time domain method, this method is
able to simulate the transient response of devices, and calculate broad band frequency response
in a single simulation. Third, non-linear behaviours, such as second harmonic generation, can
be easily incorporated into this method. These advantages make FDTD one of the easiest and
the most widely used technique in the computation of modern optics.

The disadvantages of FDTD are as follows: First, it is difficult to resolve curved surfaces,
because the structured grid is usually applied in the method. This structured grid is also very
inefficient, especially in the cases that very fine features are contained in the simulation region.
In this situation, the small grid needs to be within the whole simulation region to resolve the
fine features, even though those features is localized. Second, it would be very time consuming
to simulate the response of structures with a strong resonance, since a steady-state solution is
difficult to be found in those cases. Third, it is difficult for this method to handle problems with
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strong dispersion. This is because a continuous function needs to be fit to describe the optical
constant of the materials involved.

1.4.2 Finite Element Method

As a famous alternative to FDTD, FEM is frequenclty used in the frequency domain. The
concept of FEM is to numerically solve boundary-value problems by discretizing the geometrical
domain into a set of sub-domain elements and generating the corresponding boundary conditions
[47, 48]. A set of linear equation, thus, is established by applying the differential equation to
each sub-domain element. Finally, the fields are calculated, when the global matrix for the
whole system is solved. Such method contains those sub-domain elements, namely the finite
element, hence its name. It should be noted that meshing structure is a very important and
involved step in this method.

The following advantages distinguish FEM from other numerical techniques. First, in FEM
both structured (such as cuboids and rectangles) and unstructured (such as tetrahedrons and
triangles) grids could be applied to discretize the geometrical domain. This is very important,
because the unstructured grid is highly efficient to resolve the curved surfaces and fine features
without significant improvement of the computational time. Second, FEM could provide more
accurate solution than FDTD. This is because the fields in each grid are calculated directly
without any post-process, and the permittivity or refractive index of the materials at each single
frequency should be given without any approximation. Another appeal of FEM is that it is very
efficient to simulate the resonance response.

However, there are also some drawbacks in FEM. First, because FEM is a frequency domain
method, sweeping across the range of interested frequencies is necessary to calculate a spectrum.
Simulating a response over a broad range of frequencies would therefore be very time consuming.
Second, it would very difficult to incorporate the non-linear response into the FEM simulation.
Third, although FEM is more flexible than FDTD method, the computation time using FEM
would increase faster when degrees of freedom of increases.

Table 1.1: Comparation between FDTD and FEM. "X" means good performance, while "× " represents
bad performance.

Curved Surfaces Strong Dispersion Strong Resonance Spectrum
FDTD × X × X
FEM X × X ×

In general, FEM and FDTD method are two complementary techniques in computational optics
as Table 1.1 shows. In this thesis, I usually use both for the validation of the results. However,
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FEM is used more to reduce the computation time and to obtain accurate results, because the
strong resonance response of devices is stimulated in most case.

1.5 Organization of Thesis
In Chapter 1, we provide an general introduction of the theoretical description of the light-
matter interaction and plasmonics. Starting from the dielectric theory, we summarize the main
conclusions of Maxwell’s equations and derive the classical models for the permittivity and
permeability of materials in the response of electromagnetic radiation. Then, we present the
famous dispersion relation of SPPs at a single interface and report briefly their most important
properties. Lastly, we describe briefly and compare the working principles of numerical
simulation approaches (the finite-difference time-domain method and finite-element method)
heavily used in this thesis.

In Chapter 2, we summarize the drawbacks of the traditional SPPs, and introduce the new
materials with plasmon-like behaviour. In this chapter, the properties of graphene (as an example
of two-dimensional materials) and SiC (as an example of polar dielectrics) are then presented,
which establishes the theoretical background of the thesis.

In Chapter 3, we focus on a simple model of a graphene plasmon cavity based on a system
including a graphene layer sitting on a SiC grating. We investigate hybrid modes excited and
the coupling between the SPPs in graphene and SPhPs in SiC. A simple Fabry-Pérot model is
established to explain the results, in which a commonly used dispersion relation of GPs is used.
Finally, a preliminary model was set up in this chapter.

In Chapter 4, we investigate the cavity height dependence of the dispersion relation of GPs
by deriving an analytical expression for the dispersion relation of graphene plasmon waves
in a multilayer system. We verify the precision of this dispersion relation by comparing its
prediction and the numerical simulation results. The vertical optical property of the cavity
is also investigated and anther Fabry-Pérot model is used to interpret the phenomenon of
complete absorption. We also study the tunability of geometric parameters of cavities and the
Fermi energy, which make for flexible system design. High enhancement and extraordinary
compression of graphene plasmon waves are also demonstrated.

In Chapter 5, we study a system in which a graphene film is suspended above a SiC grating
with a small gap. We apply the height dependence of the dispersion relation derived in Chapter
4 to study the optical properties of this suspended graphene plasmon cavities. A modified
Fabry-Pérot model is used to elucidate the observed phenomena. What is the most important
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is that we try to realize the simultaneous implementation of extremely high enhancement and
extraordinary compression, which would be powerful for potential applications.

In Chapter 6, we summarise the thesis with some general conclusions and propose some possible
prospects for future researches based on our current results.
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New Materials with Plasmon-like Behaviour

2.1 Overview
Due to the use of metallic materials, traditional SPPs have some drawbacks, such as the high
Ohmic loss. In order to overcome these shortcomings, many other materials have been studied.
It is found that when the permittivity of these materials presents a negative real part, they will
exhibit plasmon-like behaviour. In this chapter, we will discuss two new materials: graphene and
polar dielectrics. In comparison with tradition SPPs on metals, both of these new materials have
some advantages. For example, they are low loss and operate at the mid-infrared frequencies,
thus significantly enlarging the working frequency range of plasmonic waves. This chapter
will provide the necessary theoretical basis for presenting the principle and the applications of
graphene plasmon cavities.

2.2 Graphene
As an allotrope of carbon, graphene consists of a mono-layer of carbon atoms arranged in
an atomic-scale hexagonal lattice as shown in Figure 2.1. Since the experimental discovery
of graphene in 2004 by Geim and Novoselov [49], graphene has become one of the hottest
research topics in nano-science and technology [35,50–56], thanks to its extraordinary properties.
Graphene is the first truely two-dimensional material that was experimentally obtained. Due to
the atomic thickness, graphene layers support unprecedented mechanical, electronic and optical
behaviours [57–63]. For example, graphene is regarded as the strongest material ever produced,
exhibits excellent thermal conductivity [64–66]. Nevertheless, the real miracle of graphene can
indeed be observed in electrical and optical fields.

Graphene can be modeled as a 2D continuous sheet charaterized by its in-plane electrical
conductivity σg based on the Kubo formula within the local random-phase model [50, 68, 69],
which ignores that the response is dependent on the wavevector and assumes that the electronic
system is controlled by the average potential. Such conductivity can be expressed as σg =

43
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Figure 2.1: High-resolution transmission electron microscopy image of graphene. Reprinted from [67].

σintra + σinter, where σintra and σinter refer the contributions from the intraband and interband
transitions of electrons in graphene, respectively. In this way, both contribuitons are given
by [70]

σintra = 8iσ0kBT

π~(ω + i/τ) ln
[
2 cosh

(
EF

2kBT

)]
, (2.1)

and

σinter = σ0

[
1
2 + 1

π
arctan

(
~ω − 2EF

2kBT

)
− i

2π ln
(

(~ω + 2EF )2

(~ω − 2EF )2 + (2kBT )2

)]
, (2.2)

where σ0 = e2/(4~), τ is the carrier relaxation time and is linked to the carrier mobility µ
via the equation τ = µEF/(ev2

F ), EF is the chemical potential (or Fermi level), kB is the
Boltzmann constant, T is the temperature, ~ is the reduced Planck’s constant, and all other
symbols have their usual meaning. It should be noted that the intraband transition term is
Drude-like, with the term 1/(ω + i/τ). Furthermore, within the low electronic-temperature
approximation (EF >> kBT ), we can reduce Equations (2.1) and (2.2) to the following forms

σintra = 4iσ0EF
π~(ω + i/τ) , (2.3)

and

σinter = σ0

[
Θ(~ω − 2EF ) + i

π
ln
(∣∣∣∣∣~ω − 2EF

~ω + 2EF

∣∣∣∣∣
)]

, (2.4)

where Θ is a step functions with two possible values (when ~ω − 2EF < 0, it is 0, while when
~ω − 2EF > 0, it is 1). Indeed, these equations are for the zero-temperature limit.
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Figure 2.2: Normalized conductivity of graphene: (a) is for the zero-temperature limit, (b) corresponds
to a temperature of 300K. The solid lines denote the real part of the normalized conductivity, while the
dashed lines denote the imaginary part. The vertical dash-dot lines are used to mark the double Fermi
energies. Three Fermi energies are reported here and are represented by three colors: EF1 = 0.44eV
(green), EF2 = 0.64eV (blue), and EF3 = 0.84eV (red).

Figure 2.2 shows the normalized conductivity (σg/σ0) of graphene under different doping
conditions. Both the zero-temperature approximation and a temperature of 300K are reported.
According to Equations (2.1) and (2.2), the conductivity is dominated by the intraband con-
tribution in the frequency band ω < 2EF . Both the real part and the imaginary part of the
normalized conductivity are positive and increase with the decrease of the frequency. The
interband contribution dominates the conductivity when ω > 2EF . The imaginary part of the
normalized conductivity becomes negative, and there is a saturation of the real part. Within
the boundary region (the region where the frequency is close to 2EF ), the real part of the
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normalized conductivity exhibits the step-like behaviour, while the imaginary part changes the
sign. When the zero-temperature limit is considered, the step-like behaviour is sharper.

We also can describe graphene using a three-dimensional model, first proposed by Vakil and
Engheta [71]. In this model, grahene is considered as a layer with a finite thickness, δ. Such
layer can be described by an effective bulk conductivity, σG = σg/δ. When the thicknesses are
small enough (usually smaller than 0.5nm), the simulation results using the two-dimensional
model are the same as those using the three-dimensional model and agree with the experimental
results. Hence, an effective permittivity can be introduced to describe the graphene layer

εG = 1 + iσG
ε0ω

= 1 + iσg
ε0ωδ

. (2.5)

Figure 2.3b shows the effective permittivity of graphene when δ = 0.5nm is considered. We
find that the real part of the permittivity is negative indicating that graphene acts like a metal,
when the frequency is smaller than the boundary frequency (2EF ). So there is no surprise to
find that GPs exist in this spectral region. One excellent feature of graphene is that its palsmonic
resonance can be readily tuned through external gate voltage [72–76]. Furthermore, when
1.667EF < ω < 2EF , the permittivity becomes extremely high. Indeed, weakly bound TE
modes can be supported by the graphene layer, due to the existence of TE guided modes in a
dielectric slab [77].

In Figure 2.3a and b, we plot the conductivity and permittivity of graphene under three different
doping conditions. In this thesis, EF = 0.64 eV and µ = 10000 cm2/(V s) (which is a typical
maximum value for the carrier mobility of chemical-vapor-deposition-grown graphene) are
used unless otherwise stated. Figure 2.4 shows the corresponding absorption. It can be seen
that a monolayer of graphene suspended in the air has a remarkably large absorption at visible
wavelengths. Despite single layer graphene being atomically thin, the absorption can reach
2.3%, which is a significant fraction of the incident white light. Such extraordinary performance
results from the unique electronic structure of graphene [78].

2.3 Graphene Plasmonics
As mentioned, SPPs arise due to collective oscillations of free charge carries in conductors [1,39]
and have attracted significant interest for overcoming the diffraction limit [6,9]. The emeregence
of graphene brings new features for plasmonics [33, 50, 79–81].

Compared to the traditional SPPs, GPs possess the following significant advantages: First, SPPs
at the dielectric-metal interface have a short life time and mainly exist at the visible and near
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Figure 2.3: Properties of graphene used in this thesis: Real and imaginary parts of the conductivity
(a) and permittivity (b) of graphene under different doping conditions are represented by solid and
dashed lines. In this thesis, T = 300K and µ = 10000cm2/(V s) (thus, EF = 0.64eV ) are used unless
otherwise stated.

infrared frequencies. Thanks to the low carrier concentration, GPs are relatively long-lived
and exist at lower frequencies (covering the mid-infrared to terahertz frequencies) [34, 82–85].
Second, GPs have very short wavelengths and exhibit extremely high confinement [86–88],
because of the two-dimensional nature of graphene. Third, and the most important, the carrier
concentration can be precisely controlled by electrical gating and/or surface doping to permit
the existence of GPs along the sheet [33, 83]. These strongly confined, long-lived, easily
tunable GPs make graphene a very promising plasmonic candidate at terahertz to mid-infrared
frequencies [70, 88].
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Figure 2.4: Graphene absorption under different doping conditions. The graphene is suspended in air.

Figure 2.5 shows the configuration of the system which consists of two semi-infinite spaces
and a graphene layer at the interface. Similar to the derivation process for the dispersion
relation of SPPs on metal-dielectric interfaces, the dispersion relation of GPs can be deduced by
considering the TM solutions on the mentioned system. The field components can be written in
the same form as the ones in Equations (1.30) to (1.35). However, due to the existence of the
graphene layer, the boundary conditions read

Figure 2.5: Configuration of a single interface system for graphene plasmons: There exist two semi-
spaces. The system consists of two media in the upper and lower semi-spaces and a graphene layer
between them characterised by a complex surface conductivity σg. ε1 and ε2 denote the permittivities of
the media. The system is homogeneous in the y-direction.

E1
x = E2

x, (2.6)

H1
y −H2

y = −σgE1
x, (2.7)
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Solving the linear equations results in the following relation

ε1
kz,1

+ ε2
kz,2

+ iσg
ε0ω

= 0, (2.8)

where ε1 and ε2 represent the permittivities of the media above and below the graphene layer.
This is a general form of Equation (2.8) to the situation where a surface current density exists
at the interface between two media. Equation (2.8) is equivalent to Equation (1.41) when a
dielectric and a metal are considered in the system with σg = 0. Because Equation (2.8) is an
implicit equation for ω and β, we should apply numerical approaches to obtain the relationship
between the wavevector and the frequency. To reveal the physics behind the equation, an
analytical expression is presented by assuming the non-retarded limit (β >>

√
εω/c)

β ≈ i
ω(ε1 + ε2)ε0

σg(ω) . (2.9)

Figure 2.6: Dispersion Relation of Graphene Plasmonics. The system has a single layer of graphene
suspended in the air, which means ε1 = 1 and ε2 = 1. Three doping conditions are presented here for
comparison.

For the cases chosen (EF = 0.64 eV and γ = 1 meV ) in this thesis, the prediction with
the non-retarded approximation works extremely well. Indeed, when large doping cases are
considered, the retardation effects can usually be neglected. The in-plane wavevector of the
GP, β, is a complex number with the real and imaginary parts determining the GP wavelength,
λspp = 2π/Re{β}, and the propagation length, Lspp = 1/(2 · Im{β}). To investigate the
properties of GPs, the effective refractive index (ERI) of the GP defined by the following
equation is used
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Neff = β/k0. (2.10)

In Figure 2.6, we show the dispersion relation of GPs calculated from Equation (2.9). In the
previous works, Equation (2.9) is the most commonly used dispersion relation. However, the
assumption here is that the upper and lower spaces are infinite, which is usually not possible in
reality. This will be discussed later and is one focus of this thesis.

2.4 Phonon Polaritons in Polar Dielectrics
In the first chapter, we introduce the first kind of polaritons – plasmon polaritons. In this section,
we bring another kind of polaritons – phonon polaritons. This kind of polariton results from the
coupling of the electromagnetic field to the collective lattice vibrations of polar dielectrics at
infrared frequencies [1, 89]. Here, the lattice vibrations of polar dielectrics are called phonons.
When the crystal consists of more than one kinds of atoms, there exist vibrational modes that
can be stimulated optically (because of the energy scale of optical phonons), and hence the
name of optical phonons. All optical phonons can be categorize into two types in terms of
the relation between the vibrational direction and the wave vector: One is called longitudinal
optical (LO) phonons and the other one is called transverse optical (TO) phonons. Figure 2.7
shows the illustration of each type of phonon mode. One can find that in both modes, the
movements of the neighbouring atoms have opposite directions. SPhPs, similar to SPPs, are the
phonon polaritons that only exist at the interface between the dielectric and the polar dielectric.
Certainly, the SPhP modes provide the ability of the confinement of light.

For polar dielectrics, there is a frequency window, referred to as the Reststrahlen band, bound by
the LO and TO phonon frequencies. Within the Reststrahlen band, polar dielectrics act simliar
to an optical metal however with lower optical losses due to the long phonon lifetime [90], as
compared to their plasmonic counterparts. The dielectric function for polar dielectric crystals
can be well described using a Lorentz oscillator model as follows

ε(ω) = ε∞

(
1 + ω2

LO − ω2
TO

ω2
TO − ω2 − iωγ

)
, (2.11)

where ωLO and ωTO are the LO and TO phonon frequencies, respectively. SiC is a typical polar
dielectric [90–94]. For SiC [95], we take the following values for the parameters: ε∞ = 6.56,
ωLO = 973 cm−1, ωTO = 797 cm−1 and γ = 4.76 cm−1. Figure 2.8 shows the permittivity, the
refractive index and the absorption of SiC. We find that the permittivity of a polar dielectric has
a pole at the TO phonon frequency, and the value has a zero-point crossing at the LO phonon
frequency. Within the Reststrahlen band, the real part of the permittivity is negative, resulting
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Figure 2.7: Schematic of longitudinal and transverse optical phonons: In this example, the system
consists of a linear chain of two different types of atoms (represented by two different colors). The
wave propagation direction is indicated by the red arrow. For longitudinal optical (LO) modes, the
displacement direction of the adjacent atoms is parallel to the propagation direction, while for transverse
optical (TO) modes, the adjacent atoms move perpendicularly to propagation direction. In optical
phonons, the oscillations of adjacent atoms are out of phase.

in the strong reflection of incidence light. That is, SiC acts like metals within this band but
without Ohmic losses because of the lack of the free charge carrier.

By comparing polar dielectrics and metals, we find that they all possess the negative real part of
the permittivity due to one kind of particles. For polar dielectrics, the particles refer to atoms,
while for metals, the particles are free electrons. Although the reasons for the negative real part
of the permittivities are different, the optical performances are substantially the same. For this
reason, the SPhPs could be recognized as an analogy of SPPs and they have the same behaviour.
Thus, the expression form of the dispersion relations of SPhPs and SPPs is the same as Equation
(1.41) shown. In Figure 2.9, the dispersion relation of the SPhPs of 4H-SiC is shown. The
corresponding system consists of the air and SiC forming an interface between those two media.
Similar to SPPs existing at the interface shown in Figure 1.4, SPhPs are confined at the air-SiC
interface and are TM modes. Note that the SPhPs can only be supported in a relatively narrow
spectral bandwidth (in the case of SiC around 176 cm−1). This is because polar dielectrics only
behave as metals within the Reststrahlen band, and are transparent to light outside of this band.
Hence, there are three uncoupled dispersion branches formed at the whole frequency range: the
upper branch, the bounded bounded branch and the lower branch. Not surprisingly, the upper
branch represents the radiative modes with smaller wavevectors than the incident light, while
the bounded branch represents the SPhP modes with larger wavevectors. However, when the
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Figure 2.8: Material properties of bulk SiC. Real and imaginary parts of the permittivity (a), the
refractive index (b), and the corresponding reflection (c) of bulk SiC are shown. The incident wavelength
is in the range of 9µm to 14µm, which is around the Reststrahlen band as the vertical line marks.. The
absorption of a plain SiC substrate (within the Reststrahlen band) can be obtained via 1−Reflection,
with an assumption that the substrate is infinite thick.

frequency is smaller than the TO frequency, the modes become the radiative modes as the same
one represented by the upper branch.
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Figure 2.9: Dispersion relations of surface phonon polaritons for 4H-SiC. The black and red lines
correspond to the bulk and surface phonon polaritons, respectively. The LO and TO phonon frequencies
are represented by the dashed horizontal lines. Different dispersions of photons in different cases are are
provided for comparison. ε(0) = ε∞

ω2
LO

ω2
T O

. It should be noted that this plot is obtained by considering
complex frequencies and real wavevectors. More detail can be found in Reference [96].

In the Reststrahlen band, the polar dielectrics can achieve field enhancement and confinement
at the interface via the SPhP modes, but with lower optical losses due to the long phonon
lifetime [90], as compared to their plasmonic counterparts. More recently, active modulation
of the permittivity (and consequently the SPhP resonances) in nanostructured SiC has been
realized by using the coupling of photoinjected carriers and optical phonons [97], and by using
phase change materials [98]. All of these advantages, as well as high thermal, mechanical and
chemical stability, make SiC highly suitable for multiple applications in mid-infrared photonics.
In addition, the coupling between the SPhPs of polar dielectrics and the GPs could exist in the
Reststrahlen band, paving the way for interactions between the two types of excitations.
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Graphene Plasmon Cavities: A Simple Model

3.1 Overview
We have already introduced graphene and SiC in Chapter 2. On the one hand, doped graphene
has been considered as an outstanding alternative to noble metals in plasmonics, because it can
support plasmonic modes that are characterized by extremely large field confinement [87] and
strong field enhancement. In addition, graphene SPPs can be easily tuned via chemical doping
or electrical gating, which is particularly appealing in nanophotonics. These extraordinary
properties of GPs make it possible to design cheap, reliable and ultrafast optical modulators
using graphene. On the other hand, as a typical polar dielectric, SiC supports sub-diffraction
confinement of light due to the excitation of SPhPs [90]. Thanks to the long lifetime of phonons
in polar dielectrics (on the order of picoseconds), as compared to scattering lifetime of electrons
in metals (10 to 100 femtoseconds), SiC can be used to design systems with low loss, high
quality factors and narrow linewidths [90]. Previous studies show that localised SPhPs with
strong field confinement exist in nanostructures of SiC [99, 100]. In addition, SiC can be used
in a number of applications due to its high thermal, mechanical and chemical stability.

We are particlularly interested in the coupling between localised SPhPs in SiC and SPPs in
graphene. Such coupling can result in hybrid modes [101] which combine the advantages of
both constituent modes - large light confinement and tunability of graphene SPPs and low loss
of SiC SPhPs. In this chapter, we will focus on a simple model of graphene plasmon cavities, in
which we apply the most commonly used assumptions (which will be discuss in the next section
and in Chapter 4) and consider the simplest structure. As shown in Figure 3.1, the system
contains monolayer graphene on top of a SiC cavity. It should be borne in mind that we consider
the cavity as part of a grating. This is because a grating is convenient for fabrication and
simulation. The scattering from the edges of the SiC cavity (rather than the grating diffraction)
provides the necessary momentum mismatch between the incidence and SPPs of graphene. A
numerical investigation of this system in the mid-infrared is reported. Within the Reststrahlen
band, the SiC behaves like a perfect conductor. Plasmonic standing waves are formed at certain

55
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grating groove lengths, which can be well explained using a simple Fabry-Pérot model. This
setup provides a simple way to efficiently excite localised graphene SPPs, and to realize strong
absorption without using widely used structures such as nanoribbons.

Strong-coupling is a hot topic in modern physics. If two subsystems couple strongly, two
new hybrid modes (as the eigenmodes of the new system) emerge, due to the qualitative
modification of the dynamics. We can find a characteristic anti-crossing which appears in
the frequency domain. This splitting is also known as Rabi splitting. Therefore, whether
such splitting is visible can be used as the definition of strong-coupling [102]. The coupling
of surface phonons and GPs has attracted wide attention [103–105]. This is particularly
important at the mid-infrared band for typical polar dielectric substrates, such as SiC [106, 107]
and SiO2 [108–110]. Previous studies have already demonstrated this in graphene/h-BN
heterostructures [87, 111–114], and surface absorbed polymers [115]. Recently, the strong-
coupling between phonon-polaritons in a SiO2 coating and localised plasmons in a gold antenna
has been explored, and it is found that the splitting leads to a transparency window [116].
In addition, there is a lot of interest in the strong interaction of light and individual emitters.
However, it is very challenging to achieve such strong-coupling in experiments. To overcome
this challenge, we can appeal to two main approaches: First, cavities with high quality factor
Q can be used. This is because light needs to travel many times in such cavities to acquire a
high quality factor, and hence the interaction between light and the emitters can be boosted
in this process. This approach often requires that the loss in both the cavity and emitter is
small. Therefore, dielectric cavities and cryogenic temperatures are usually employed in this
approach [117, 118]. Another approach is to minimize the effective volume V of cavities, so
that the size mismatch between light and individual emitters can be compensated. SPPs are
usually applied in this approach, because plasmons can be used to overcome the diffraction
limit and to concentrate the electric field in small hot spots [119]. The strong field confinement
and enhancement can also boost the interaction between light and matter. Both approaches have
advantages and disadvantages: dielectric cavities often have a high quality factor but with weak
field confinement. Plasmons can be used to achieve strong field confinement, but its quality
factor is very low because of the high loss. Thus, the ratio of Q/V is usually used to qualify the
strength of the interaction.

In this chapter, we will also study the strong-coupling between the localized SPhPs in SiC and
the SPPs in graphene around the LO phonon frequency. We find that a Rabi splitting appears
due to this coupling, which indicates that there is a coherent energy transfer between the two
original systems [120]. In addition, we combine the two mentioned approaches together to
boost the value of Q/V . This work offers a possibility to effectively excite coupling modes
with confinement and manipulation of light, and pushes the potential for enhanced, broadly
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tunable spectroscopy into the mid-infrared and terahertz range [95]. In addition, high quality
factor and small modal volume make the system very suitable for inducing and exploring the
strong interaction between light and matter.

The Fabry-Pérot model in this chapter was established by myself. The simulation results
discussed in this chapter were obtained by Dr Ke Li and myself. The theoretical analysis was
performed by Jamie M Fitzgerald and myself. The materials discussed in this chapter was
previously published [121]. The figures in this chapter are either reproduced or adapted from
this publication, with permission granted by the American Chemical Society.

3.2 System Setup and Theory
The system we considered in this chapter is shown in Figure 3.1. It is composed of a single
layer of graphene suspended on and in contact with a SiC grating. The grating has a periodicity
in the x direction. The meaning of parameters are shown in the caption of Figure 3.1b. In order
to excite the SPPs of graphene, a TM incidence propagates in the y direction from air and is
normal to the surface of the structure. In this simulation, the graphene thickness is 0.5 nm,
which we have checked is converged for all results. All other simulation conditions, including
the details of the model for graphene, can be found in Chapter 2.

Figure 3.1: Schematics of the SiC-graphene plasmonic system. (a) Three-dimensional view and (b)
cross-sectional view of the structure. The geometrical parameters of the system are as follows: Λ is the
grating period, W is the width of the grating ridge, L is the width of the grating groove, and h is the
grating height. The illumination is TM polarized as shown in (b) and is normal incident from the air.

Despite the impressive advantages of SPPs in graphene, efficiently exciting these plasmonic
waves is still challenging due to the large momentum mismatch between the incident light
and GPs. Grating coupling [122, 123] (GPs are excited by diffraction effects owing to the
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grating periodicity), cavity coupling [121,124] (localized cavity modes are excited by scattering
of cavity ridges), near-field coupling [36, 125–127], and excitation by scattering of random
structures [128] are widely used schemes to achieve phase matching. Among them, grating
coupling and cavity coupling are convenient because, as well as assisting the coupling between
excitations and incident light, these structures also can be used as a gate electrode to tune the
resonance frequency over a wide spectral range, allowing the system to act as a very tunable
optical filter. We apply the commonly used assumptions that interband transitions can be
ignored (see Equation (2.3)) and that the zero-temperature limit is considered (see Equation
(2.9)). Then, we can obtain the dispersion relation of the plasmon waves [33, 86, 121, 122]

β = π~2ε0(ε1 + ε2)
e2EF

(
1 + i

ωτ

)
ω2. (3.1)

Equation (3.1) means that a monolayer graphene is sandwiched between two infinite half-spaces
with the relative permittivities ε1 and ε2. The wavelength of GPs against with the incident
wavelength is plotted in Figure 3.2a for a graphene sheet in vacuum (ε1 = 1 and ε2 = 1) with
various doping levels. These curves demonstrate that the wavelength of GPs is on the order
of 10-100 times smaller than the wavelength of the incidence, which indicates the strong field
confinement ability of graphene. This also leads to the huge momentum mismatch between
the incidence and the GPs which demonstrates the challenges in efficient coupling. Unless
otherwise stated, the Fermi energy is set as 0.64 eV throughout this chapter. It should be noted
that β will be written as kspp. In this thesis, β will be used when we derive the dispersion
relations, while kspp or khspp will be used when such relations are used to build models. This
does not change any physics involved.

3.3 Optical Properties of a SiC Grating
The absorption is applied to investigate the optical properties of the system. In this section,
we numerically calculate the absorption in different structures. Unless otherwise stated, we
fix the grating height and the width of the grating ridge to be 1 µm throughout this chapter.
In the following, the change in the cavity length is equal to the change of the grating period.
The structures studied here can be divided into two classes, the bare SiC structure and the
SiC-graphene structure. In the simulation, the SiC substrate is assumed to have infinite thickness
below the grating to switch off the transmission channel of the system and simplify analysis. We
consider the incidence with wavelengths in the range of 10 µm to 14 µm and grating periods in
the range of 1.1 µm to 5 µm, respectively.

We begin by studying the bare SiC grating without the graphene layer and numerically calculat-
ing its absorption as shown in Figure 3.2b. In comparison with the plain SiC case (we could get
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Figure 3.2: (a) The wavelength of graphene SPPs for various Fermi energies. (b) Total absorption
(PNGabs ) versus grating period (Λ) and excitation wavelengths (λ) for a bare SiC grating (with no graphene
layer) structure. (c) Total absorption (P Tabs) versus grating period and excitation wavelength for the
SiC-graphene structure. (d) Graphene layer absorption (PGabs) vs grating period and excitation wavelength.
The system is the same as the one in (c). A fit to a simple Fabry-Pérot model for a phase shift of −π (see
Equation (3.2)) is indicated by the blue curves. The other geometrical parameters of the system are fixed
as follows W = h = 1 µm.

the absorption of the plain SiC using 1− Reflection as shown in the bottom of Figure 2.8),
there exist a number of peaks within the Reststrahlen band when the SiC grating is considered.
This is because the existence of the grating allows the excitation of SPhPs in bulk SiC [100]. We
observe that there is a region in which large absorption occurs and the frequencies are close to
the LO frequency. However, above this region but within the Reststrahlen band the absorption
is very low, because in this region the SiC acts as a perfect reflector and absorbs low energy.
Outside the Reststrahlen band, where the frequencies are larger than ωLO and less than ωTO,
the SiC grating has behaviour similar to a plain SiC surface which can be found in Figure 2.8.
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3.4 Excitation of Plasmonic Standing Waves
Now we focus on the SiC-graphene structure, in which a graphene layer is added on top of the
grating. Two relevant quantities are considered here: the total absorption (sum of the absorption
of the SiC grating and the graphene layer), P T

abs, shown in Figure 3.2c, and the absorption in
graphene layer, PG

abs, shown in Figure 3.2d. As compared to the bare SiC grating case, the most
striking difference here is that strong absorption peaks appear in the previously low absorbing
region of the Reststrahlen band. Such high absorption peaks occurs only for certain grating
period lengths, so we could take a guess that they are related to the standing waves. The similar
behaviours of these peaks as shown in Figures 3.2c and d suggest that they exist in the graphene
layer. These guesses can be confirmed by looking at the near field plots as shown in Figure
3.3. The modes are excited at integer numbers of L/λspp, and the electric field is concentrated
in the graphene sheet in the region directly over the air. We also find that plasmon modes are
antisymmetric (we refer to the z-component of the electric field). This can be understood by
noted that SiC behaves like a perfect conductor within the Reststrahlen band, which can screen
out the electric fields very efficiently at the boundaries. Therefore, the z-component of the
electric field is forced to be fully reflected and the phase is put to zero at the boundaries. The
normal incidence excites graphene plasmonic waves at the edge which are out of phase, and only
odd modes will be formed by constructive interference [129]. To confirm this, the absorption
with different cavity lengths (for a fixed wavelength λ = 12 µm) and the near field plots for
each peak are shown in Figure 3.3. It can be seen that each peak in the absorption corresponds
to the antisymmetric plasmonic modes. Figure 3.4 shows the illustration of plasmonic standing
waves. Of course, the symmetric plasmonic modes can be generated when the oblique incidence
exists (because the oblique incidence will break the symmetry of the system), which will be
mentioned in the next chapter. It should be noted that there is a very weak field (consequently
low absorption) in the regions of the graphene layer located at the top of the SiC. This is still
because that for this frequency the SiC behaves like a perfect electric conductor and can screen
out any external field very effectively. As a result, the plasmon standing waves are established
in the cavity, and the parts of the graphene layer located at the top of the SiC have no effect
on the optical behaviour reported here. In other words, the graphene layer can be replaced by
graphene ribbons that only cover the cavity, and the phenomenon and the explanation are the
same as the ones shown here. The near field in Figure 3.3 also reveals another feature that a
small peak located near L/λSPP = 0 exists. This is a localised SPhP mode that can also be
visible without graphene (see Figure 3.2b). Its appearance is due to near-field coupling between
the two SiC slabs when the cavities is small enough.

We emphasis again that the excitation of the graphene plasmonic modes is not due to diffraction
of the grating. The mismatch of the momentum between the plasmon modes and the incidence
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Figure 3.3: Absorption of graphene layer against different geometrical parameters L/λspp of SiC grating.
The repeated peaks existing at integer numbers of L/λspp correspond to standing waves of the graphene
SPPs, which can be indicated by the z-component of the electric field for each peak. The electric field is
normalised to the incident field magnitude and goes to zero at the edges of the cavity demonstrating the
antisymmetry of the plasmonic modes.

is compensated from the scattering from the edges of the cavity, not from the gating periodicity.
There are two pieces of evidence to prove this: First, the plasmonic modes we explore here are
not reproduced by the grating equation kspp = N 2π

Λ where N is the diffraction order and Λ is the
grating period. Second, the peak position stays the same for different perodicities Λ when the
cavity length is fixed. Therefore, these modes are localised cavity modes and not modes that are
excited by diffraction effects of the grating [130]. There are two main reasons that we consider
a grating here: First, it simplifies the numerical calculations, because the reflection and the
absorption can be easily defined. Second, the grating would be convenient for the fabrication
and experiments. We can obtain similar results, when a single cavity is employed. It is worth
noted that the field enhancement in the simulations is rather modest, which is far below the
maximum reported values. This is because we only focus on the physics behind the excitation
of the standing wave modes. In the next chapter, we will reveal how to obtain an extremely high
field enhancement using a similar system.

As mentioned, we attribute the existence of this repeated absorption feature in Figure 3.2 to
the excitation of plasmon standing waves on the graphene layer in the cavity. In this section,
we confirm our intuition about these modes using a simple Fabry-Pérot model along with the
graphene dispersion in Equation (3.1). The Fabry-Pérot model reads
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Figure 3.4: Sketch of the standing plasmonic waves of graphene SPP resonance. It should be noticed
here that the cavity is assumed to be sufficiently deep (h > 0.5µm).

δφ+ <{kspp(λ)}L = mπ,m = 0, 1, 2, 3..., (3.2)

where δφ is the phase shift introduced due to the contact between the graphene layer and SiC
around the edges of the cavity, and m is a natural number denoting the resonance mode order.
The phase shift here is a measure of the depth of plasmonic waves penetrating into the material
of the grating. Of course, the phase shift can also be explained as the extra effective length of
the Fabry-Pérot cavity that is larger than the actual cavity size. We find that when we take a
phase shift of −π, the prediction from this model agrees well with the simulation results (as
the blue lines indicated in Figure 3.2d) in the spectral region near the TO frequency. This is
because that SiC behaves like a perfect electric conductor in this region, and thus the reflection
from the walls of the cavity would be perfect. In this region, the plasmon standing waves
are formed only in the cavity. However, at frequencies away from this region, the phase shift
will show frequency dependence and will differ from −π. This can be understood by noted
that SiC does not behave like a perfect reflector any more at these frequencies. Therefore, the
electromagnetic field will be allowed to penetrate into the SiC and accumulate the extra phase
shift. This interesting feature can be applied in applications where plasmonic resonators based
on a graphene layer are tuned via manipulating the boundary conditions. It also should borne in
mind that there will not be this feature when metals are used in the system, because metals will
act as perfect conductors at mid-infrared frequencies that we consider in this thesis.
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3.5 Possibility of Applications
So far, we have confirmed the excitation of plasmonic standing waves, and have provided proof
for this. In the following, we will focus on the possibility of the system as a practical setup.

This system possesses several advantages over other reported systems and would be more
suitable for a practical setup. For example, this system can be easily excited and provides
high field enhancement, which facilitates potential applications in molecular sensing. In an
experiment, the geometric parameters would not change, once the sample is fabricated. Thus,
it would be more natural to explore the features of the spectra to investigate these standing
wave modes for a fixed geometric parameters. Figure 3.5a shows the absorption spectra for
the same geometry L = 1.06 µm, W = 2.0 µm and h = 1 µm. To demonstrate the tunability
of such system, different Fermi energies are considered. It can be seen from the figure that
the absorption peak exhibits blueshift with the increase of the Fermi energy and its intensity
increases. This can be understood by noted that a larger Fermi energy means an increase in
carrier concentration causing greater restoring force and thus a blue-shifted plasma frequency.
The increase in carrier concentration also results in greater oscillation intensity and hence the
growth of the absorption intensity. The tunability of the graphene is significant to this system,
which boosts the practicality of the platform.

Figure 3.5: (a) The absorption in the graphene layer against the incident wavelength with fixed geomet-
rical parameters L = 1.06 µm, W = 2.0 µm and h = 1 µm. Different Fermi energies are shown. (b)
The absorption in the graphene layer against different geometric parameters L/λspp for several grating
heights h with EF = 0.64 eV .

It is very interesting to study the effect of the grating height on the optical properties of the
system. Figure 3.5b shows the calculated graphene absorption with varying cavity height. We
observe that the resonance position is independent of the cavity height, however, the absorption
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intensity exhibits strong height dependence. This is because the peak positions depend only on
the width of the cavity due to the Fabry-Pérot resonance, and are not perturbed by the cavity
height when h is sufficiently large (h > 500 nm here) as confirmed by Equation (3.1). However,
higher absorption is due to the formation of another Fabry-Pérot cavity in the vertical direction.
When we increase the height, the first Fabry-Pérot resonance is approached, leading to higher
absorption. This will be described in detail in the next chapter.

It is worth quantifying the applicability of the cavity as an experimental platform for strong
light-matter interactions, such as for molecular detection. As mentioned, the ratio of the quality
factor to the volume (Q/V ) is considered as the appropriate evaluation parameter. This ratio
is also know as the Purcell factor. A square cavity (with sides of length L) is considered here
to calculate the volume. The width of the grating ridge is set as 1 µm, and the side length
is calculated using a period of a plasmon standing wave. We take the out-of-plane decay,
δz, of the plasmon as the dimension perpendicular to the graphene layer. This value is given
by δz ∼ 1/<[kspp(ω)] [131] for large field confinement kspp >> 2π/λ. When the incident
wavelength is at 12 µm, this distance is equal to 0.17 µm. The quality factor is estimated by
considering Q ≈ ω/∆ω where we apply a Lorentzian fit to calculate the linewidth ∆ω. For
12 µm excitation wavelength, a value of Q/V = 8× 105/λ3

0 is found. This is comparable to
the ones reported for other graphene nanoresonators [87]. However, this system has a much
simpler structure and operates within a different frequency band.

Figure 3.6: (a) Zoomed-in view of the graphene absorption (for W = h = 1 µm) in the Figure 3.2d
around the LO frequency of SiC highlighting the Rabi-splitting for different modes. (b) Zoomed-in
view for m = 3 mode. The LSPhP wavelength and the graphene SPP dispersion are presented by the
purple dashed line and the cyan dashed line, respectively. The dispersion of graphene SPP is obtained by
using the Fabry-Pérot model with a phase shift of −0.35π. The resulting splitting of the hybrid mode is
indicated by the blue curves.
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3.6 Rabi Splitting
In this section, we will focus on another interesting feature that is revealed in Figure 3.2d and
provided in more detail in a further zoomed-in view in Figure 3.6. We observe that a set of
anti-crossing points exist in the absorption spectrum close to the LO phonon frequency, which
demonstrates a set of GP modes and a localised SPhP mode in SiC [100] are strongly coupled.
Such strong coupling can be intuitively understood by considering a classical model of two
coupled harmonic oscillators [120]. As highlighted in Figures 3.6a and b, the Rabi splitting
possesses a particular shape, which results from the dispersive SPP in graphene layer and the
localized SPhP in SiC at a fixed wavelength of 10.6 µm. The strong coupling regime highly
depends on the level of the damping of the two subsystems. Therefore, to better observe the
Rabi splitting, the linewidths of GPs and the SiC cavity localized SPhPs should be small. It
should be noted that GPs becomes lossy because of the phonons of the substrate [87], when
the frequencies are close to the LO phonon frequency. When the loss is too large, then the
anti-crossing is invisible. This is because only when the difference in the real parts of the
energies (shown below) is bigger than the widths of the new modes, the actual Rabi splitting
can be visible. However, when the large loss is introduced, the two energies would have larger
line-widths and the double peak maxima would essentially overlap and not be visible [120].
Fortunately, in the system discussed in this chapter, GPs are excited in the graphene layer which
is free-standing in the cavity and not in contact with the substrate. The loss is not too large, and
thus we should neglect this effect.

To quantitatively analyse the strength of coupling, we extract a slice of the graphene absorption
and apply a fit to the curve using a sum of two Lorentzian functions in Figure 3.7. We find
that the peak separation in the Rabi splitting, ~ωR, equals to 1 meV . This parameter can
then be employed within a coupled harmonic oscillator model to describe the anti-crossing
behaviour [132]

E±(ω) = ~ωSPP + ~ωSPhP
2 ± 1

2
√

(~ωR)2 + (~ωSPP − ~ωSPhP )2. (3.3)

This model has been used heavily in the field related to plasmon and phonon polaritons. In this
particular case, the localized SPhP energy is fixed with a value of 0.12 eV and the GP energy
can be obtained as following by using Equations (3.1) and (3.2)

ωSPP =

√√√√(mπ − δφ)e2EF
Lπ~2ε0(ε1 + ε2) . (3.4)

In this equation, both ε1 and ε2 are set as 1, the phase shift is regarded as the fitting parameter
and it is not expected to be −π at these frequencies any more. In order to get a good fit for the
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Figure 3.7: Spectra corresponding to the L = 1.45µm (which means Λ = 2.45µm). These peaks
are fitted by the summation of two Lorentz equations. The full widths at half maximum of these two
peaks are 0.004 rad/µm (W1) and 0.005 rad/µm (W2), respectively. The distance of the splitting is
D = 0.005 rad/µm.

whole set of the GP modes shown in Figure 3.6, we obtain a phase shift of δφ = −0.35π. This
value clearly indicates that the SiC does not behave like a perfect reflector at these wavelengths.

We also show two near field plots corresponding to the two modes in Figure 3.7. These plots
reveal the different nature of the hybrid mode, depending on the incident frequency. At lower
frequencies, the field is situated at the bottom of the cavity, and introduces high absorption
due to the phonons. Thus the mode is more phonon-polariton-like. At larger frequencies, the
field is concentrated in the graphene layer on top (as we saw before) because of the graphene
SPPs, and therefore the mode is more graphene-plasmon-like. This particular phenomenon is
a consequence of strong coupling between modes, and can be used to realize spatial control
of the near field distribution. This highly advantageous behaviour of the strong coupling has a
high potential to be applied in phonon-polariton based switches. Of course, the cavity width
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and doping level can be used to achieve further manipulation of the relative contribution of each
mode in the hybrid mode.

Finally, we quantify the strength of the coupling by comparing the linewidths of the constituent
modes (W1 and W2) to the distance of the splitting (D). Considering the Rabi splitting to be
experimentally observable, we conclude D & W [120]. The splitting is fitted using a sum of
two Lorentz equations. The obtained values of the parameters are listed in the caption of Figure
3.7. When the largest linewidth is considered, we get D/W = 1 which demonstrates that the
interaction of the two modes is strong coupling. It is obvious that the ratio of D/W is just
on the threshold of the required value, and there are more possibilities of the definition of the
strong coupling. However, this figure is expected to be improved by further optimisation of the
system.

3.7 Conclusions
In this chapter, the graphene and SiC cavity system has been introduced. We have explored the
coupling between the SPPs in graphene and the SPhPs in SiC, and have shown its suitability
as an experimentally realisable, tunable cavity. We have demonstrated that a number of new
modes (in the low absorption part of the Reststrahlen band) result from the hybridization of
a graphene monolayer and a SiC grating. Such modes are antisymmetric plasmon standing
waves that can be interpreted by a simple Fabry-Pérot model. The absorption peaks positions
(corresponding to the Fabry-Pérot resonances) can be tuned by altering the Fermi energy of
the graphene and the cavity width, which shows the tunability of this system. In the vicinity of
LO frequency, we observe a hybrid mode resulting from the strong coupling between graphene
SPP and local SPhP. This hybrid mode shows the characteristics of both component modes.
Our results also provide the possibility for strong coupling with local trace level quantities of
molecules. We find that, over a small frequency range in mid-infrared, the spatial profile of
the hybrid modes can change significantly. The tunability, along with high quality factor and
low modal volume, makes the system fit for cavity quantum-electrodynamics and molecular
sensing.
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In the previous chapter, we have introduced a simple system, where we can efficiently excite
standing waves of graphene SPPs and have studied the coupling between the SPPs in graphene
and SPhPs in SiC. A simple Fabry-Pérot model can be used to well explain the observed
phenomenon. As shown in Equation (3.2), in this model the in-plane wavevector of GPs needs
to be calculated, and thus we applied the most famous and most commonly used dispersion
relation of SPPs in graphene (see Equation (3.1)). However, there is an assumption in this
expression that will limit its scope of applications. In this chapter, we will address this issue
first. In addition, we will explore the vertical properties of the SiC cavity and optimize the
design to achieve total absorption and strong compression.

The content in this chapter was previously published by the author as a lead-author article in
the journal titled ‘Applied Materials Today’, and thus, is credited to: Xiaofei Xiao, Xiaofeng
Li, Joshua D Caldwell, Stefan A Maier, Vincenzo Giannini. “Theoretical analysis of graphene
plasmon cavities.” Applied Materials Today, 12, 283-293, 2018. Copyright Elsevier.

4.1 Overview
As we can see from Equation (3.1), the commonly used dispersion relation of a plasmonic
wave in a continuous monolayer of graphene depends on the materials above and below the
graphene film, as well as the properties of the graphene layer itself. For cavities such as the one
shown in Figure 4.1, Equation (3.1) predicts the existence of standing waves which have been
observed [33, 86, 121, 122]. One important feature of these investigated cavities, however, is
that they have sufficiently deep (> 0.5µm) trenches h, so that the materials below the cavities
have little impact on this relationship. Hence, Equation (3.1) provides a good approximation of
the behaviour. This is not the case for a shallow cavity. Here, we explore the dependence of the
dispersion relation on the height of the cavity in such systems.

69
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Figure 4.1: Schematic of a SiC grating-cavity-assisted GP excitation. The incident light is transverse
magnetic polarized in air, where Λ, W , L, and h are the period, ridge width, trench length, and height of
the grating, and θ is the incident angle. The incident light can be titled in this system, compared to the
configuration shown in Figure 3.1.

In this chapter, we explore the dependence of the dispersion relation on the height of the cavity,
and explore the coupling between SPhPs and GPs. We derive an analytical expression for the
dispersion relation of the GP waves in a multilayer system, providing a useful tool to show the
influence of the materials below the cavity on the dispersion relation. We consider a system
comprising a single layer of graphene and a SiC grating with cavities (see Figure 4.1). The
scattering from the sharp edges of the cavity overcomes the large mismatch between the GPs
and the incident light. The absorption properties and field distributions of this system in the
infrared range are investigated. The results show that the derived analytical description of the
dispersion relation of the GPs can precisely predict the excitation of the cavity GP waves, while
Equation (3.1) fails for systems with shallow cavities. Additionally, numerical results show
total absorption can be achieved under certain parameters, which can be predicted precisely
using a Fabry-Pérot model in the horizontal direction for GPs and a Fabry-Pérot model in the
vertical direction for gap SPhPs. This means that the interaction of the SPPs and SPhPs can
be used to tune the cavity resonances. High enhancement and extraordinary compression of
GPs are realized under certain conditions. We further provide results for different doping levels
and different substrates. Under normal incident excitation, only antisymmetric plasmon modes
are excited because of the symmetry of the system. To excite symmetric plasmon modes, we
adopt oblique incidence to break the system symmetry. Finally, a potentially simpler and more
realistic configuration is outlined.
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This section is structured as follows: in section 4.2, we derive the dispersion relation for the GP
waves in multilayer systems. In section 4.3, we excite the standing waves using the Fabry-Pérot
cavity effect in the horizontal direction, compare the predictions from the derived dispersion
relation and the simulation results using FEM, and discuss the influence of the materials below
the cavity on the dispersion relation. In section 4.4, we explore the cavity height-dependence of
GPs, present the vertical Fabry-Pérot cavity effect, and discuss the coupling between SPhPs and
SPPs in this system. In section 4.5, we further report the high enhancement and extraordinary
compression of the GPs. In section 4.6, we present examples under different doping levels. In
section 4.7, we demonstrate the possibility of exciting symmetric plasmon modes at oblique
incidence. In section 4.8, we compare the effects of different substrates. In section 4.9, we
outline the potentially simpler and more realistic configuration.

4.2 Graphene Plasmons in Multilayer Systems
We consider the most general three-layer system consisting of alternating conducting and/or
dielectric films with non-source-free boundary conditions, as illustrated in Figure 4.2: Firstly,
layer II, a slab of thickness t, is sandwiched between two infinitely thick claddings (layers
I and III). The relative permittivities and permeabilities are εi and µi, respectively, where
i = 1, 2, 3 represent materials I, II and III, respectively, and µi is equal to 1 for non-magnetic
materials. Secondly, a complex surface conductivity σg is used to describe the property of the
interface between media I and II. Hence, one can identify it as a I-G-II-III system, where I,
II and III represent metal or dielectric materials, and G represents a 2D material (graphene
in this example). In such a system, each single interface may sustain bound SPPs or SPhPs
depending on the configuration. It is worth noting that previously studied metal-insulator-metal
structures, insulator-metal-insulator structures, insulator-excitonic material-insulator structures,
and insulator-insulator-insulator structures including 2D materials can be regarded as special
cases of this system [1, 133, 134].

Since we are only interested in the lowest-order GP modes here, we begin by looking for the
general TM solution. Using the coordinate system of Figure 4.2, we write the wavenumber of
GPs as β, which corresponds to the component of the wavevector in the direction of propagation
(x-direction). In source-free regions of space, the GP magnetic fields and electric fields can be
expressed by the following sets of equations: In the upper space (z > t/2),

Ex = iA
1

ωε0ε1
kz1e

iβxe−kz1z, (4.1)

Hy = Aeiβxe−kz1z, (4.2)

Ez = −A β

ωε0ε1
eiβxe−kz1z, (4.3)
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Figure 4.2: Geometry of a three-layer system consisting of a thin layer II (the middle space) sandwiched
between two infinite half spaces I (the upper space) and III (the lower space) with an interface between
media I and II characterized by a complex surface conductivity σg (representing graphene or, more
generally, any conducting 2D material).

and in the middle space (−t/2 < z < t/2, the )

Ex = −iC 1
ωε0ε2

kz2e
iβxekz2z + iD

1
ωε0ε2

kz2e
iβxe−kz2z, (4.4)

Hy = Ceiβxekz2z +Deiβxe−kz2z, (4.5)

Ez = C
β

ωε0ε2
eiβxekz2z +D

β

ωε0ε2
eiβxe−kz2z, (4.6)

and in the lower space (z < −t/2)

Ex = −iB 1
ωε0ε3

kz3e
iβxekz3z, (4.7)

Hy = Beiβxekz3z, (4.8)

Ez = −B β

ωε0ε3
eiβxekz3z, (4.9)

where k0 is the wavenumber in free space as usual, A,B,C and D are the field amplitudes
satisfying the boundary conditions, kzi ≡ ki,z, denotes the z-components of the wavevectors in
the three materials, which reads k2

zi = β2 − k2
0εi for i = 1, 2, 3.

By applying the boundary conditions, the following requirements should be satisfied at the
interfaces between non-magnetic materials: at the upper interface at z = t/2

E1
x = E2

x, (4.10)

H1
y −H2

y = −σgE2
x, (4.11)

and in the lower interface at z = −t/2
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E2
x = E3

x, (4.12)

H2
y = H3

y . (4.13)

Solving this system of linear equations results in an implicit expression for the dispersion
relation linking β, t, and ω via

e−2kz2t = kz2/ε2δ + kz1/ε1
kz2/ε2δ − kz1/ε1

kz2/ε2 + kz3/ε3
kz2/ε2 − kz3/ε3

, (4.14)

where

δ = 1 + iσg
ωε0ε1

kz1. (4.15)

The impact of the material not in contact with the graphene layer is fully considered in the
derived dispersion relation, which will show a significant distinction for shallow cavity assisted
structures. It should be noted that Equation (4.14) is valid for both real and complex εi. The
considered system represents a variety of configurations under some assumptions, such as
σg = 0. Additionally, this expression implies that β cannot be written in an explicit form. We
note that when t is sufficiently large, Equation (3.1) is a good approximation of Equation (4.14).
Finally, the GP magnetic and electric fields are obtained from Equation (4.1)-Equation (4.9)

A = D
2kz1/ε1δ

kz1/ε1δ + kz3/ε3
e(kz3−kz1)t/2, (4.16)

B = D

[
kz1/ε1δ − kz3/ε3
kz1/ε1δ + kz3/ε3

e(kz2−3kz1)t/2 + e(kz1+kz2)t/2
]
, (4.17)

C = D
kz1/ε1δ − kz3/ε3
kz1/ε1δ + kz3/ε3

e−kz1t. (4.18)

The in-plane wavevector of the GP, β, is a complex number with the real and imaginary parts
determining the GP wavelength and the propagation length. To investigate the properties of
GPs, the ERI of the GP defined will be used. In the following, β will be written as khspp
(where khspp = Neffk0) to explicitly show the height dependence of the wavevector of the GPs.
We should borne in mind that in most cases, we expect strong field confinement and long
propagation length. It is worth noted that the superscript in khspp denotes the height dependence,
which is different from the kspp mentioned in Chapter 3.
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4.3 Plasmonic Standing Waves in Shallow Cavities
As we mentioned, the plasmonic waves in graphene have extremely high field confinement,
which enable us to build devices with dimensions well beyond the diffraction limit. However, to
excite the GPs with a free-space optical wave is still very challenging due to the large differences
in wavevector. Here we still use one of the most widely used schemes – scattering from the
sharp edges of cavities, as shown in Figure 4.1, to provide the necessary additional momentum
and efficiently facilitate the excitation, whilst we still consider the cavity as part of a periodic
structure. As we confirmed in Chapter 3, it is the scattering by defects (sharp ridges, in our case)
that generates a broad spectrum of wavevectors, in which a solution to the following coupling
condition can be easily found

khspp(λ0) = 2π
λ0
sin(θ) +K. (4.19)

Here θ is the incident angle, andK is the compensated wavevector generated from the scattering
process. The superscript h is explicitly used to stress the dependence of the dispersion relation
on the height of the cavity in Figure 4.1. For a normal incident wave (θ = 0◦), we easily obtain
a simplified formula khspp(λ0) = K.

Although the wavevector mismatch is overcome by scattering, the condition for establishing
standing waves in the cavity needs to be satisfied, because GPs are excited from both edges and
the forward and backward launched waves must constructively interfere. This is still true in this
chapter. Thus, the cavity length L needed for free-space wavelength λ0 is still determined by a
Fabry-Pérot equation

δφ+ <{khspp(λ0)}L = mπ,m = 0, 1, 2, 3..., (4.20)

where δφ and m have their usual meanings. However, it should be noted that the khspp has the
height dependence now, compared to kspp in Equation (3.2). In this chapter, the cavity height
does not change the boundary conditions. Thus, the tangential component of the electric field
at the edges still needs to vanish as a consequence of the electric field boundary conditions,
resulting in a phase shift of −π for the plasmon waves. Figure 4.3 shows the height-dependent
standing waves of the GPs supported on the cavity.

For a TM wave, the plasmonic waves in graphene are excited when the cavity length L matches
Equation (4.20) and the optical energy is dissipated due to the Ohmic loss while the plasmonic
wave propagates in the graphene monolayer. At normal incidence, the GP waves originated
from the two edges of the cavity are out-of-phase, and thus, antisymmetric plasmon modes
associated with odd-mode order in Equation (4.20) can occur. At oblique incidence, the odd
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Figure 4.3: Sketch of the standing waves of GP resonances with height dependence.

modes can be excited from two edges, and thus, the plasmons with even-mode order can be
excited. Here we simulate the optical response of the structure shown in Figure 4.1 using FEM.
Unless specified, the incident light is TM polarized and incident from the air side, normal to
the surface. Our study [121] shows that the ridge width does not change the essence of the
proposed theory used to precisely predict the excitation of cavity GP waves, and that the ridge
width does have influence on the excitation efficiency of the graphene absorption. To obtain a
high efficiency for this work, we have fixed the ridge width at 2µm.

Figure 4.4: Real and imaginary parts of the ERI for different values of the incident wavelength λ0
obtained from both Equation (4.14) (marked as EII) and Equation (3.1) (marked as EI), where media I
and II are air, medium III is SiC, EF = 0.64eV , and h = 0.15µm.
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To validate our model we begin by considering the short grating height case. In the simulation,
incident wavelengths and cavity lengths are in the range 10µm→ 13µm and 0.1µm→ 2.5µm,
respectively, with a grating height fixed at 0.15µm. The SiC substrate is infinitely thick below
the grating to switch off the transmission channel and simplify the analysis. Figure 4.4 shows
the ERI for different values of the incident wavelength λ0 obtained from Equation (4.14), where
media I and II are air, and medium III is SiC (in Figure 4.2a). One striking feature is the
abrupt change of the ERI with incident wavelength around 10.5µm. This can be understood
by noting the change of the refractive index of SiC. It can be seen that real and imaginary
parts of ERI decrease dramatically at first and then slowly with increasing incident wavelength,
when λ0 > 10.5µm. The ERI obtained from Equation (3.1) is also shown in Figure 4.4 (solid
lines). The difference between these two results shows the essential distinction between the
calculations with and without considering the influence of the material below the cavity.

Figure 4.5: (a) Under TM polarized normal incident light, whole absorption (PWabs) for the SiC grating
plus graphene structure versus the trench length (L) and the incident wavelength (λ0), when W = 2µm,
and h = 0.15µm. (b) Graphene layer absorption (PGabs) for the same structure used in (b). The yellow
and black curves indicate a fit to a Fabry-Pérot model for a phase shift of −π (see Equation (4.20)) using
Equation (4.14) and Equation (3.1), respectively.

We calculate the whole absorption (PW
abs, representing the sum of the absorption of the SiC

grating and the graphene layer) of a SiC grating with graphene sheet present versus the trench
length (L) and the incident wavelength (λ0) shown in Figure 4.5a, when W = 2µm, h =
0.15µm. The strong absorption peaks around the SiC LO frequency are mainly due to the
excitation of SPhPs in the SiC grating [121]. Graphene layer absorption (PG

abs) in the SiC grating
plus graphene structure is also shown in Figure 4.5b. The appearance of the absorption peaks in
the low absorption region of the Reststrahlen band for certain cavity lengths, shown in Figure
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4.5a and b, is evidence of the excitation of the GP. The electromagnetic field is concentrated
on the graphene layer and the plasmon modes are antisymmetric plasmon standing waves at
normal incidence. These findings have similarities with published work on the excitation of GP
modes using a grating or cavity [121, 124]. However, because the cavities used in those works
are very deep, Equation (3.1) is sufficient to predict the peak positions for these systems. To
show how Equation (4.14) and Equation (3.1) contrast, both equations are used to theoretically
predict the absorption peak positions in our system, as shown in Figure 4.5b. The remarkable
agreement between the results from Equation (4.14) (compared with the ones from Equation
(3.1), indicated by the black dashed curves) and the ones from the numerical simulation indicates
that: (i) the material below the cavity has a distinct influence on the dispersion relation of the
plasmonic wave on the graphene layer when the cavity is shallow, and (ii) the localized cavity
modes are excited by the scattering from the cavity edge rather than by diffraction effects owing
to the grating periodicity [121, 130], since the peak position does not change with varying Λ
(for a fixed cavity length, see reference [121] for more details).

To reveal the mechanism of the cavity height dependence of the dispersion relation in our system,
we investigate the system by varying the cavity height for a fixed wavelength λ0 = 12µm,
as shown in Figure 4.6. The ERI against the grating height is calculated using Equation
(4.14) shown in Figure 4.6a. We find that the real and imaginary parts of the ERI begin to
drop drastically until the height reaches 0.3µm. After h exceeds sizes larger than 0.5µm, the
difference between the ERIs calculated from different equations is negligible. This is because
when h is large (h > 0.5µm here), Equation (3.1) is a good approximation of Equation (4.14),
which means now khspp depends only on the material directly above and below the suspended
graphene (in this case, air). These findings are demonstrated more clearly by the good agreement
between the analytical results from Equation (4.14) and those from the FEM simulations for the
SiC grating plus graphene structure as shown in Figure 4.6b. The field distribution for different
peaks shows that antisymmetric modes are excited. We emphasize again the dependence of
λhspp on the cavity height, in contrast to previous works. In Figure 4.6c and Figure 4.6d, we
plot the near-fields for two systems with the same geometry, with the only exception being the
different cavity heights (h = 0.032µm and h = 0.284µm), showing that we are able to excite
two different modes by only varying the cavity height. This is pictorially shown in Figure 4.3.
We also show the near-field distribution for another pair of systems with the same geometry,
except for differences in the trench length (L = 1.03µm and L = 2.07µm) in Figure 4.6d and
Figure 4.6e. These findings enable us to tune the cavity resonances by varying the geometric
parameters. Specifically, the cavity height can be used to tune the wavelength of the plasmonic
waves on the graphene. The tunability of these geometric parameters make this system very
versatile.
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Figure 4.6: (a) Real and imaginary parts of the ERI from Equation (4.14) (marked as EII) and Equation
(3.1) (marked as EI) against the grating height (h) for a TM polarized, normal incidence at a fixed
wavelength λ0 = 12µm, where media I and II are air, medium III is SiC, and EF = 0.64eV . (b)
Graphene layer absorption (PGabs) for the SiC grating plus graphene structure versus the trench length (L)
and the grating height (h). The blue and black curves indicate a fit to a Fabry-Pérot model for a phase
shift of −π (see Equation (4.20)) when using Equation (4.14) and Equation (3.1), respectively. (c-e)
Near-field distribution of Ez for three cases marked as points A, B, and C in (b). (c) A second-order
mode with h = 0.032µm and L = 1.03µm. The zoomed-in view is given as well. (d) A first-order mode
with h = 0.284µm and L = 1.03µm. (e) A second-order mode with h = 0.284µm and L = 2.07µm.
The electric field distribution verifies the height dependence of the standing waves supported on the
cavity. The electric field is normalised to the incident field magnitude. Different colorbars are used.

To further confirm these findings, Figure 4.7a shows the graphene absorption varying with
cavity length (for a fixed wavelength λ0 = 12µm). The peaks at integer multiples of L/λhspp
correspond to the standing waves of the GPs as indicated by the near-field distribution plots
in Figure 4.7b-e. The peak position does not change for different values of the grating period
because of the independence of the excitation of the localized cavity modes on the grating effect.
Comparison of the predictions from Equation (4.14) and Equation (3.1) demonstrates that the
former provides more accurate results.
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Figure 4.7: (a) Graphene absorption for different geometric parameters (h and L) of the SiC grating.
Predictions of peak positions obtained from Equation (4.14) (marked as EII) are indicated by the vertical,
colorized, dashed lines. Predictions from Equation (3.1) (marked as EI) are also given. (b-e) The
peaks correspond to standing waves of the GPs as indicated by the near-field plots of Ez for peaks A
(h = 0.1µm and L = 0.8µm), B (h = 0.2µm and L = 0.97µm), C (h = 0.3µm and L = 1.04µm),
and D (h = 0.3µm and L = 2.04µm). The electric field goes to zero at the boundaries meaning the
plasmon modes must be antisymmetric.

4.4 Simultaneous Excitation of Graphene Plasmon Cavity
Modes and Vertical SiC Fabry-Pérot Cavity Modes

The above work derives the dispersion relation of GP waves in multilayer systems, confirms
the influence of the materials below the cavity on the dispersion relation, and demonstrates
the Fabry-Pérot cavity effect in the horizontal direction. In this part we explore the vertical
property of the system. In Figure 4.6b, it is worth noting that the absorption is weak (< 15%)
when the cavity is very shallow, although becomes stronger as the cavity height h increases.
Considering the fact that in this region of the spectrum SiC acts, to a good approximation, as a
perfect electric conductor, it would seem that Fabry-Pérot resonances could be achieved in the
vertical direction of the cavity for certain parameters .
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Figure 4.8: Vertical Fabry-Pérot Cavity Model. (a) Whole absorption, SiC absorption, and graphene
layer absorption of the SiC grating plus graphene structure (with W = 2µm and L = 1.06µm) as
functions of the grating height at incident wavelength of λ0 = 12µm. (b) Peak positions of these three
types of absorptions. The peak positions for the three types of absorptions coincide. The peaks are
periodically spaced as a function of the grating height. The inset shows the schematic of an air slab
sandwiched between two infinite half spaces (SiC), which is a special case of the structure in Figure 4.2a.
Gap SPhPs are generated in this structure. The distributions of x- and z-components of the electric field
(Ex and Ez , respectively) corresponding to the points marked A, B, and C in (a) and (b) are shown for
h = 2.13µm (c and f), h = 25µm (d and g), and h = 79.9µm (e and h). The same colorbar is used
for each component, while the scales in (e and h) are half of the ones used in (c),(d), (f), and (g). The
peaks correspond to standing waves of the gap SPhPs supported in the vertical direction of the SiC cavity
as indicated by the near-field plots of Ex in (c-e). The fundamental symmetric gap SPhP eigenmode
propagating along the y-axis supported by the cavity is clearly seen in (c-h). The gray dashed line in (a)
indicates a boundary, after which the graphene absorption is smaller than the SiC absorption.

To prove this hypothesis, in Figure 4.8a, we investigate the whole absorption of the complete
system, the SiC absorption and the graphene absorption varying with the cavity height h (for a
fixed wavelength λ0 = 12µm and trench length L = 1.06µm). Note that all curves in Figure
4.8a present stationary periodic oscillation behavior, which is also verified by the perfect linear
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relation of the peak positions shown in Figure 4.8b. The period is about 4.574µm, which
equals half of the effective wavelength in the cavity (λ0/<{NSPhP

eff }/2 = 12/1.3131/2 =
4.569µm. The definition of NSPhP

eff and details of its calculation will be provided later.). This
is understood by noting that there are SPhP modes excited on the cavity walls as indicated
by the electromagnetic fields in Figure 4.8c-h. Similar to gap SPPs [135], for sufficiently
small gap widths, the SPhPs associated with the two cavity walls interact with each other
and form single gap modes, in which the fundamental symmetric eigenmode exhibits an even
symmetry of the normal field component, Ex as shown in Figure 4.8c-e, and odd symmetry
of the tangential electric field component, Ez as shown in Figure 4.8f-h. Similarly, these gap
modes can be termed as gap SPhPs, although they are more accurately described as slot wave-
guide modes, having the ability to achieve strong mode confinement together with relatively
low Ohmic dissipation. Similar to the wavelength and the propagation length of gap SPPs, the
wavelength and the propagation length of gap SPhP are defined as λSPhP = 2π/Re{βSPhP}
and LSPhP = 1/(2 · Im{βSPhP}), respectively, where βSPhP = NSPhP

eff · k0 is the in-plane
wavevector of the gap SPhP and NSPhP

eff is the ERI of the gap SPhP. βSPhP can be calculated
using Equation (4.14). In our case, we assume that σg = 0µS, t = 1.06µm, medium I and III
are SiC, and medium II is air.

The curves in Figure 4.8a divide into two parts, as shown by the grey dashed line. When
the cavity height is smaller than 24.95µm (left part in Figure 4.8a), it is observed that total
absorption can be achieved in the system for certain cavity heights. This indicates the critical
coupling condition is satisfied [136], and a standing wave is formed. This can be understood
by noted that the reflection of the front of the graphene film can be completely cancelled by
the leaked wave from the cavity formed by the graphene layer and back mirror (the bottom
material). Meanwhile, the graphene absorption (even 72% is achievable) dominates the whole
absorption of the system. Figure 4.8c-e show clearly that the standing waves are formed in the
vertical direction of the cavity. Thus, the Fabry-Pérot cavity hypothesis in the vertical direction
is verified. When the cavity height is larger than 24.95µm (right part in Figure 4.8a), total
absorption of the system cannot occur, and the SiC absorption becomes the main part of the
whole absorption in the system. The increasing SiC absorption is mainly due to the increasing
area of the SiC walls in the cavity. Because of the increase of the SiC absorption, the intensity of
the reflected waves from the bottom decreases, and thus reduces the excitation efficiency of the
plasmonic modes on the graphene. Meanwhile, the reflection of the front of the graphene layer
cannot be completely cancelled, and consequently total absorption cannot be achieved. All three
absorptions approach constant values (the constant values of the total system absorption, the
SiC absorption and the graphene absorption are about 70%, 55% and 15%, respectively) when
the cavity height is significantly (about five times) larger than half the characteristic propagation
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length of the gap SPhP (LSPhP/2 = 76.4µm), because in this case most of the energy of the
gap SPhPs is absorbed by the cavity walls. The proposed configuration can achieve an efficient
coupling of photons to GPs and gap SPhPs, as well as provide strong coupling between GPs
and gap SPhPs, for the development of future devices.

4.5 High Enhancement and Extraordinary Compression of
Graphene Plasmons

In Figure 4.9, we show the intensity distributions for two special cases. This figure reveals
that the most striking features are the strong intensity (the highest enhancement is ∼ 4000 in
Figure 4.9a) when the total absorption in the system occurs, and the extraordinary confinement
(the compression factor is 375 in Figure 4.9b) of the electromagnetic field. In Figure 4.9a, the
extremely high field enhancement (∼ 4000) is compressed on the graphene layer providing
high potential for applications in molecular sensors. This is in contrast to the grating system
in the aforementioned references [121, 130] where the field enhancement is limited. Figure
4.9b shows the ability for trapping GPs in an extremely small gap. This confinement can be
even stronger when using a much shallower cavity. However, the graphene absorption will
get smaller with the reduction of h, when h is sufficiently small (in the case of Figure 4.8a,
h < 2.13µm). Thus, we need to balance the confinement and the intensity of the field, when
we try to design the system. Another interesting feature is that the intensity distribution for
the total absorption case shown in Figure 4.9a is different from the one shown in Figure 4.9b.
This is because the intensity has two contributions, the x- and z-components of the electric
field. The x-component contribution is dominated by the vertical Fabry-Pérot effect, while
the z-component contribution is dominated by the horizontal Fabry-Pérot effect. In Figure
4.9a, both contributions are strong, which can be clearly seen in Figure 4.8c and Figure 4.8f.
However, in Figure 4.9b the z-component contribution dominates the intensity. Interestingly,
the energy in Figure 4.9b is mainly trapped in the cavity.

4.6 Electrostatic Tuning of the Graphene Plasmons
Plasmonic modes are particularly appealing in graphene due to the ultra-broad and fast tunability
of the Fermi energy via chemical doping or electrical doping. Optical gaps of up to 2eV (which
corresponds to EF ∼ 1eV ) can be achieved [137]. Thus, the peak positions in the absorption
spectra can be tuned by electrical or chemical doping. Figure 4.10a shows graphene absorption
with different Fermi energies for a normal TM incidence. Figure 4.10a shows the trench length
corresponding to each peak increases with the increase of the Fermi energy. This is because the
GP wavelength goes up as the Fermi energy rises. This paves the way to build cheap, reliable,
ultra-fast and highly tunable optical modulators. The predictions from Equation (3.1) and
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Figure 4.9: (a) High intensity (E2) distribution for the first total absorption peak at h = 2.13µm and
L = 1.06µm marked as point A in Figure 4.8a. Distribution of the intensity along the gray dashed line
at the center of the cavtiy is given as well. The enhancement around the graphene layer in this case is
about 4000. (b) Intensity (E2) distribution of the extraordinary compressed plasmonic waves trapped
in the cavity with h = 0.032µm and L = 1.03µm marked as point A in Figure 4.6b. The compression
factor of λ0/h in this case is 375.

the ones from Equation (4.14) indicate again that the latter equation reveals the cavity height
dependence of the dispersion relation. The near-field plots of Ez for peaks marked as A-D are
given in Figure 4.10b-d and Figure 4.7c.

4.7 Symmetric Plasmon Modes Excited at Oblique
Incidence

The previous discussions only consider the normal TM incidence, where only antisymmetric
modes are excited in the cavity. Under a TM polarized source at oblique incidence, it is
expected that the incident light breaks the symmetry of the system, and consequently stimulates
symmetric plasmon standing waves. In Figure 4.11, we show the properties of our system
under this case for a fixed incident wavelength and fixed geometric parameters. Compared with
Figure 4.7a, Figure 4.11a exhibits additional absorption peaks corresponding to the symmetric
plasmonic modes, when the incidence angle is fixed at 30◦ with varying the trench length. The
predictions from Equation (4.14) shown as black dashed lines and red dashed lines in Figure
4.11a, which agree well with the simulation results. The peaks predicted by vertical black
lines correspond to antisymmetric plasmon modes confirmed by Figure 4.11c and Figure 4.11e,
while the ones predicted by red lines correspond to the symmetric plasmon modes confirmed by
Figure 4.11b and Figure 4.11d. It is worth noting that the GP modes of different cavities in the
same grating structure are out-of-phase due to the oblique incidence, clearly indicated by the
near-field of peak D for five grating periods in Figure 4.11f.
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Figure 4.10: (a) Graphene layer absorption for different Fermi energies (EF ) and trench lengths (L)
of the SiC grating when h = 0.2µm, W = 2.0µm, and λ0 = 12µm. Predictions of peak positions
from Equation (4.14) (marked as EII) are indicated by the vertical, colorized, dashed lines. Predictions
from Equation (3.1) (marked as EI) are also given. (b-d) The peaks correspond to standing waves of
the GPs as indicated by the near-field plots of Ez for peaks A (EF = 0.44eV and L = 0.71µm), C
(EF = 0.84eV and L = 1.19µm), and D (EF = 0.84eV and L = 2.41µm). The near-field for peak B
(EF = 0.64eV and L = 0.97µm) can be found in Figure 4.7c.

4.8 Comparison Between SiC and Metallic Substrates
The substrate of the configuration we considered previously is SiC, which acts, to a good
approximation, as a perfect electric conductor at the frequencies of interest. However, it is
expected that there is still some difference between SiC and the perfect electric conductor
model.
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Figure 4.11: (a) Graphene layer absorption against the trench length (L) under a TM polarized oblique
incidence at a incident angle of θ = 30◦ for fixed geometric parameters λ0 = 12µm, h = 2µm, and
W = 2.0µm. The insets are the schematic of a configuration with a metallic substrate and a zoomed-in
plot of the third peak shown by the blue dashed line. Predictions of peak positions obtained from
Equation (4.14) are indicated by the vertical dashed lines. (b-e) The peaks correspond to standing waves
of the GPs as indicated by the near-field plots of Ez (here normalised to the incident field magnitude)
for peaks A (L = 0.54µm), B (L = 1.06µm), C (L = 1.61µm), and D (L = 2.135µm). The peaks
predicted by vertical black lines correspond to antisymmetric plasmon modes as shown in (c) and (e),
while the ones predicted by red lines correspond to the symmetric plasmon modes as shown in (b) and
(d). (f) Near-field plots of Ez for peak D for five grating periods. The pink dashed box showing the
position of the plot in (e).
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Figure 4.12: (a) Schematic of a configuration with different substrates. PEC represents perfect electric
conductor. (b) Graphene layer absorption as a function of the grating trench length (L) when h = 2.0µm,
W = 2.0µm, and λ0 = 12µm. Predictions of peak positions obtained from Equation (4.14) (marked
as EII) are indicated by the vertical black dashed lines. (c-f) The near-field plots of Ez for different
substrates shown in (b). The trench length L = 1.115µm is for (c) and (e-f), while L = 1.063µm is for
(d).

In this part, we study the effects of different substrates by changing the substruate material of
the configuration shown in Figure 4.12a. In Figure 4.12b, we show the graphene absorption
of the system with different substrates for fixed incident wavelength and fixed geometric
parameters under the normal TM incidence. The results show that the simulations with the
perfect electric conductor model and metallic materials (aluminium [138] and gold [139] here)
give the qualitatively same behaviour. The behaviour is modified for the system with SiC. This
can be understood by viewing the optical properties of SiC and the metallic materials. We
find that metallic materials, compared with SiC, acts more like a perfect electric conductor
at the frequencies of interest. It is also worth noting that the whole absorption of the system
(not shown) with SiC substrate is much higher than the other three cases. One the other hand,
there is a little difference between the prediction from Equation (4.14) and the peak position for
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perfect electric conductor model. This is because in this work we do not consider the near-field
distribution around the sharp edges shown in Figure 4.12c. Figure 4.12d-f show the near-field
distribution of other cases. Additionally, based on the derived equations in this study, we could
predict the most appropriate range of the permittivity for the substrate that may help generate
the strongest electric fields on the graphene surface.

Figure 4.13: (a) Schematic of a realistic configuration with a dielectric material (n is its refractve index)
filling in the cavity. (b) Graphene layer absorption as a function of the trench length (L) of the SiC
grating for different values of the refractive index (n) of the cavity, when h = 0.2µm, W = 2.0µm,
and λ0 = 12µm. Predictions of peak positions obtained from Equation (4.14) (marked as EII) are
indicated by the vertical dashed lines. Predictions from Equation (3.1) (marked as EI) are also given by
the vertical dash-dot lines. The green curve has been offset. (c-d) The near-field plots of Ez for peaks A
(L = 0.612µm) and B (L = 1.252µm) marked in (b).

4.9 Extension Toward Applications
In this chapter, all scenarios considered until this point are free-standing graphene layer and
spaced by air cavities that served to simplify discussion and our understanding of the modes. We
consider now simpler and more realistic configurations. First, we fill the cavity with a dielectric
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medium with the refractive index n, shown in Figure 4.13a, which can be easily achieved by
deposition of oxides or an organic layer.

As an example, we analyse the modes exhibited by peak A and peak B shown in Figure 4.13b.
As expected, the peak positions agree with the predictions from Equation (4.14) shown in
Figure 4.13b, while the predictions obtained from Equation (3.1) are not precise. Clearly, there
is a small difference between the simulated results from FEM and the predictions from Equation
(4.14). This is because, although a phase shift of −π is always used to get a fit of Fabry-Pérot
model, there should be small difference between the phase shift for different configurations,
which can be found by looking at the near-field around the edges. A surprising feature is that
the predictions from Equation (4.14) remains very good as the number of the peaks increases,
while the ones from Equation (3.1) become worse. This can be understood by noting that the
additional length between peak A and peak B is one GP wavelength (as shown in Figure 4.13c
and Figure 4.13d), and the difference between the simulated peak positions and their predictions
from Equation (4.14) remains the same. This feature is also found in Figure 4.7 and Figure
4.10. This finding confirms the precision of Equation (4.14). In addition, by comparing the
results under different n (as shown in Figure 4.13b), we find that when the refractive index of
the cavity increases, the difference between the results from Equation (3.1) and Equation (4.14)
reduces, and the graphene layer absorption decreases.

Apart from the refractive index of the cavity, the shape of the cavities also has an influence on
the graphene surface plasmon. For example, Figure 4.14a shows a realistic configuration with
rounded cavity edges with radius R and we calculate its graphene absorptions with different
values of R as shown in Figure 4.14b. The resonances under rounded edges are redshifted with
respect to the sharp edges case, and the shift get larger with the increase of the radius R. This
is because the effective trench length increases. Also, new peaks appear due to the different
reflection at the edges.

We foresee experimental demonstrations of the existence and manipulation of the cavity modes
in such simple geometries. Their extraordinary confinement and strong enhancement could
make the system as an ideal interface for sensing and integrated optics.

4.10 Conclusions
In this chapter, we have analysed the SPPs supported on graphene cavities made of SiC or
metallic cavities. An analytical expression for the dispersion relation of GP waves in a multilayer
system have been derived. This simple analytical expression is a useful tool showing the cavity
height dependence of the dispersion relation of the GPs. Total absorption of the system can
be achieved under certain parameters, which can be predicted precisely using two Fabry-Pérot
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Figure 4.14: (a) Schematic of a realistic configuration with rounded cavity edges with radius R. (b)
Graphene absorption for different shapes of the cavity edge, when L = 1.06µm, h = 2.0µm, and
W = 2.0µm. The green and blue lines represent results with R = 0.005µm and R = 0.010µm,
respectively. The red line shows the result under the sharp edges of the cavity.

models. One Fabry-Pérot model is in the horizontal direction for GPs, while the other one is
in the vertical direction for gap SPhPs. The interaction of the SPPs and SPhPs can be used in
order to tune the cavity resonances. The tunability of Fermi energy and geometric parameters
of the cavities, along with the substrate, make the design of this system very flexible. High
enhancement and extraordinary compression of GPs have also been realized under certain
conditions. Under oblique incidence, symmetric plasmon modes have been excited. Plasmon
cavity modes make this an ideal system for molecular sensing and integrated optics.
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Plasmons in Suspended Graphene

In the previous chapter, we have derived an analytical expression for the dispersion relation
of graphene plasmon waves in a multilayer system (see Equation (4.14)), which is a useful
tool showing the cavity height dependence of the dispersion relation of the GPs. Unlike the
commonly used dispersion relation (see Equation (3.1)), this new analytical expression is valid
for cavities with any height, greatly expanding the scope of the dispersion relation. In this
chapter, we will extend this work further to establish a model for plasmonic cavities with a
suspended graphene layer upon the SiC cavity by using this new relation.

5.1 Overview
In the previous chapters, we have stated the advantages of graphene and its plasmonic waves.
Due to the unique mechanical, electric, magnetic and thermal properties of graphene [140–142],
graphene has received much attention by academia and industry. In particular, GPs have
attracted plenty of interest for applications in optics and electronics [52, 71, 79, 121, 143, 144],
especially for improving optoelectronic device performances [145, 146] and the development of
wearable devices [147, 148]. Its strong confined, long-lived, easily tunable GPs make graphene
a very promising 2D plasmonic material for terahertz to mid-infrared applications. [82,149,150]

However, theories of GPs in a suspended graphene layer are insufficient. The major reason is
that the commonly used dispersion relation of GPs in a continuous graphene monolayer fails
when the gap is small [151]. It is because that the expression of this commonly used dispersion
relation only includes the materials above and below the graphene film, and the properties of
the graphene layer itself. In Chapter 4, we have derived a much more precise relationship,
and demonstrated that the GPs in a graphene plasmon cavity can be easily tuned by varying
the cavity height and the material of the substrate. The height dependence of the dispersion
relation paves the way for the study of GPs in a suspended graphene layer. Another challenge
in the field of GPs is that, although high enhancement and extraordinary compression of GPs
could be realized under certain conditions [151], it is still very challenging to achieve both
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simultaneously, due to the mutual limitation of the field enhancement and compression in most
cases.

Figure 5.1: Schematic of a grating-assisted suspended graphene plasmon cavity. The incidence is TM
polarized in air, where Λ, L1, L2, and H are the period, trench length, ridge length, height of the grating,
h2 is the gap thickness, and θ is the incident angle. Thus, we have h1 = h2 + H . The gap and the
trench are filled with a dielectric medium with the refractive index n. Compared to the systems in Figure
3.1 and Figure 4.1, this system includes a gap between the graphene layer and the grating, which will
introduce a huge difference.

In this chapter, we explore the optical properties of plasmons in suspended graphene such as
the system shown in Figure 5.1. The investigated system consists of a continuous graphene
monolayer on top of a SiC cavity with a gap space. The GPs are launched because of the
scattering from the sharp edges of the cavity, which overcomes the large mismatch between the
GPs and the incident light. We establish a model of the suspended graphene plasmon cavities,
in which the Fabry-Pérot equation and the dispersion relation of GPs in a general multilayer
system are applied. To confirm the validation of the proposed model, the graphene absorption
is calculated using a numerical method. The excellent agreement between the theoretical
predictions of the position of the graphene absorption peaks and the numerical results confirms
the accuracy of the proposed model. Remarkably, the extremely high field enhancement and
extraordinary compression of GPs occur simultaneously, thanks to the combination of a shallow
cavity and a deep cavity in the same configuration. Finally, we analyse the tunability of the
Fermi energy and geometric parameters of the cavities. This enables us to optimize the device
to achieve potential applications by using the combination of the two cavities with different
heights.
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5.2 Theoretical Background
In the previous chapter, we derived a dispersion relation of GPs (see Equation (4.14)) in a
general multilayer system (as shown in Figure 4.2), which will be used in this chapter to
establish the model of suspended graphene plasmon cavities. To study the properties of GPs, the
ERI of the GP, Nh

eff = khspp/k0 is introduced. Here, the superscript of Nh
eff is used to distinguish

between different cavities with different heights.

The plasmonic waves in graphene have attracted numerous investigations, because of the
extreme field confinement. However, efficient excitation of those plasmonic waves is still very
challenging, because there is a large momentum mismatch between the incident light and GPs.
In the previous two chapters, we have established a model to explain the excitation in a single
graphene plasmon cavity. However, it should be borne in mind there are two different cavities
in the current work, as shown in Figure 5.1: One is in the trench, and the other one is above
the ridge. These cavities have different length (L1 and L2) and height (h1 and h2). In each
cavity, the scattering by sharp ridges is used to generate a broad spectrum of wavevectors to
compensate the momentum mismatch. The forward and backward launched plasmonic waves
constructively interfere in the cavities to form standing waves. Thus, when the cavity length Lj
(where j = 1, 2 represent the cavities in the trench and above the ridge, respectively) satisfies
the Fabry-Pérot equation, the GPs could be excited. The Fabry-Pérot equation reads

δφj + <{khj
spp(λ0)}Lj = mπ, m = 0, 1, 2, 3..., j = 1 and 2, (5.1)

where δφj and m have their usual meanings. However, it should be noted that there are two
cavities existing simultaneously, and hence j = 1 and 2. In previous chapters, we have showed
that, when the substrate has metal-like behaviour and there is no gap space above the ridge, a
phase shift of −π for the plasmon waves exists in the cavity as a consequence of the electric
field boundary conditions. This is still a good approximation in the case where there is a gap
space. However, we will address this issue more rigorously by considering the coupling between
GPs and a dipole mode. Under normal incidence, the excited plasmon modes are antisymmetric
in each cavity, because of the symmetry of the system. Figure 5.2 shows a sketch of the standing
waves of GP resonances supported in this system. While these waves propagate in the graphene
layer, the optical energy is dissipated due to the Ohmic loss. In this chapter, we refer to this
equation when we mention the Fabry-Pérot model. Different valuses of δφj will be used.

5.3 Configuration of Suspended Graphene System
To validate the established model of suspended graphene plasmon cavities, we will consider the
configuration shown in Figure 5.1. The system is composed of a graphene monolayer deposited
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Figure 5.2: Sketch of the standing waves of GP resonances in two types of cavities in one grating period.

on a SiC grating, and we assume that there is a small gap between the two. The graphene layer
is located on the x-y plane with the grating period in the x direction. The period, trench length,
ridge length, and height of the grating are represented by the letters Λ, L1, L2, and H (see
Figure 5.1). The gap thickness and the incident angle are represented by the letters h2 and θ,
respectively. The gap and the trench are filled with a dielectric medium with the refractive index
n, which can be easily achieved by deposition of oxides or an organic layer. As mentioned, the
graphene plasmon cavities supported by this system are two different types (see Figure 5.2).
Here, we have h1 = h2 +H .

In this chapter, the incident source is TM polarized and incident from the air side, normal to the
surface, and the material of substrate is SiC [96, 121, 152]. As before, the substrate is infinitely
thick below the grating to switch off the transmission channel, and the material in the gap
and trench is set as air (later, we will consider a more realistic configuration). The details of
the properties of SiC and graphene can be found in Figure 2.8. The incident wavelength is
set as 12µm, since SiC acts, to a good approximation, as a perfect electric conductor at this
wavelength. To obtain a high efficiency for this work, we have fixed the trench height (H) at
2µm.

5.4 Varying Trench Length and Ridge Length
To investigate our system, we begin by calculating the graphene absorption varying with trench
length (L1) and ridge length (L2) for a fixed gap thickness h = 0.005µm. The trench lengths
and ridge lengths are in the range of 0.9µm to 2.6µm and 1.0µm to 2.5µm. The corresponding
ERIs (Nh

eff) calculated using Equation 4.14 are 56.3407 + 0.9354i and 11.2315 + 0.1315i with
h = 0.005µm and h > 1m, respectively, where media I and II are air, and medium III is SiC.
The graphene absorption (PG

abs) versus the trench length and the ridge length is shown in Figure
5.3. The strong absorption peaks exist in the low absorption region of the reststrahlen band
for certain trench lengths and ridge lengths, because of the excitation of the GPs. This can be
confirmed by looking at the z-component of the electric field for points labelled as A, B,C, and
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D, as shown in Figure 5.4a-d. The electromagnetic field is concentrated on the graphene layer
and has a fixed number of wavelengths in each cavity. The plasmonics modes are antisymmetric
as a consequence of the electromagnetic field boundary conditions and the symmetry of the
system. This is pictorially shown in Figure 5.2.

Figure 5.3: Graphene layer absorption (PG
abs) for the SiC grating plus graphene structure versus the

trench length (L1) and the ridge length (L2), when the gap thickness is 0.005µm. The normal incidence
is TM polarized at a wavelength λ0 = 12µm, where media I and II are air, medium III is SiC, and
EF = 0.64eV . The dashed lines indicate a fit to a Fabry-Pérot model for a phase shift of −π. The black
solid lines indicate a fit to a Fabry-Pérot model for a phase shift of −1.12π, while the blue solid ones
indicatie a fit to a Fabry-Pérot model for a phase shift of −0.69π.

In the earlier works, the graphene monolayer and the grating are in physical contact with one
another. However, there is a gap between them in this study. This makes a striking difference,
in that there exists a very strong field in the parts of the graphene which are located above the
trench of the SiC grating, and consequently there is very strong absorption in these locations. In
Figure 5.3, the local maximum values of the graphene absorption correspond to the excitation
of both standing waves in both cavities. The predictions of those local peak positions are
also given using the proposed model, as the crossing points of the black dashed lines (for the
cavity in the trench) and the blue dashed lines (the cavity is above the ridge) shown in Figure
5.3. Although the reasonable agreement between the predictions and the numerical results
confirms the validity of the proposed model, an apparent shift between the predictions and the
real local peak positions exists. To understand this discrepancy, we did a simulation for a case
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without the graphene layer. Figure 5.4e shows the near field distribution for this case, where
the dipole mode is excited. This always happens when the structure is much smaller than the
incident wavelength. The incidence drives the positive and negative carriers to two ends of the
ridge. The oscillations of those opposite carriers generate the electromagnetic field around the
edges. It should be borne in mind that even if the material of the substrate is a perfect electric
conductor, the dipole mode still exists. This dipole mode will couple to the graphene plasmonic
modes, which could be observed clearly in the near-field plots shown in Figure 5.4a-d. As a
consequence, we need to modify the Fabry-Pérot model by optimizing the phase shift δφj to be
different from −π to compensate for the difference. In the case of Figure 5.3, a phase shift of
−1.12π for the plasmon waves exists for the type of cavities in the trench, while a phase shift of
−0.69π for the plasmon waves exists for the other type of cavities above the ridge, as the solid
lines show. However, it should be noted that the value of the phase shift δφj strongly depends
on the gap thickness, the permittivities of the materials in the system, and the properties of the
graphene layer. Using the modified model, we found excellent predictions as shown by the
crossing points between the black solid lines (for the cavity in the trench) and the blue solid
lines (the cavity is above the ridge) shown in Figure 5.3.

Due to the coupling between the GPs and the dipole mode, another interesting feature is that the
strong absorption still exists, even though the conditions for establish standing waves in those
two cavities are not fully satisfied individually. In addition, the shape of the strong absorption
looks like a "Sigmoid function" with a rotation of 90 degrees. This is because the absorption
would be still strong, as long as the boundary condition of the both cavities matches with each
other, and the dipole mode would shift the absorption peak position. This was confirmed by
the near-field plot (shown in Figure 5.4f) for the point marked as point E in Figure 5.3. The
absorption becomes the strongest when the Fabry-Pérot resonance is satisfied in each cavities.

5.5 Gap Thickness Dependence
To show the gap thickness dependence of the dispersion relation, we investigate the system by
varying the gap thickness and the ridge width as shown in Figure 5.5, Figure 5.6 and Figure 5.7.
The real and imaginary parts of the ERI against the gap thickness calculated using Equation
4.14 is shown in Figure 5.5. As expected, both parts begin to drop drastically until the thickness
reaches 0.3µm. After the thickness exceeds sizes larger than 0.5µm, both parts become constant.
This is because when the thickness is larger than 0.5µm, the dependence of the dispersion
relation on the gap thickness and the materials of the substrate is negligible. This also could
be easily verified by considering large value of the thickness of slab II in Equation 4.14. In
Figure 5.6, the obtained data in simulations verify the dependence of the phase shift δφ2 on
the gap thickness. As we can see from Figure 5.6, the phase shift follows the similar trend as
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Figure 5.4: (a-d) Near-field distribution of Ez for three cases marked as points A, B, C, and D in Figure
5.3 which is re-sketched in this figure. The modes supported in the gap and the trench are different for
those four cases. The corresponding parameters are as follows: (a) L1 = 1.135µm and L2 = 1.245µm,
(b) L1 = 1.135µm and L2 = 2.310µm, (c) L1 = 2.205µm and L2 = 1.245µm, (d) L1 = 2.205µm
and L2 = 2.310µm. The electric field is normalised to the incident field magnitude. The electric field
distribution verifies the standing waves supported by the cavity. The same colorbar is used for those four
plots. (e) Near-field distribution of Ez for the case marked as point B, but without the graphene layer,
where L1 = 1.135µm and L2 = 1.245µm. (f) Near-field distribution of Ez for the case marked as point
E, where L1 = 1.410µm and L2 = 2.230µm. The electric field is also normalised to the incident field
magnitude. Different colorbars are used for the last two plots.

the behavior of the real part of ERI. In Figure 5.7a, we show the numerical results against the
gap thickness and the ridge width. The accuracy of the proposed model was confirmed by the
behavior graphene absorption. In this part, the gap thicknesses and ridge lengths are in the
ranges of 0.001µm to 0.150µm and 1.00µm to 1.50µm, respectively. As expected, the peak
positions vary with the variation of the gap thickness and the ridge length. This confirms the
dependence of the dispersion relation on the gap thickness and the proposed model. In Figure
5.7a, the strong graphene absorption still corresponds to the excitation of both standing waves
in both cavities. This was confirmed by the near-field distributions for three cases with different
geometries in Figure 5.7b-d. The predictions of strong absorption peak positions are also given
using the proposed model (with and without modification), as the curves shown in Figure 5.7a.
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Figure 5.5: Real and imaginary parts of the ERI from Equation 4.14 against the gap thickness (h2) for
TM polarized, normal incidence light at a fixed wavelength λ0 = 12µm, where media I and II are air,
medium III is SiC, L1 = 1.135µm and EF = 0.64eV .

The zoomed-in view confirms the accuracy of the theoretical prediction again. These findings
enable us to make it possible to tune the cavity resonances by varying the geometric parameters,
such as the trench length, ridge length, and gap thickness. In particular, the gap thickness can
be used to efficiently tune the wavelength of the graphene plasmonic waves in the cavity above
the gap. The tunability of such geometric parameters makes the system very versatile.

5.6 Simultaneous Implementation of Extremely High
Enhancement and Extraordinary Compression

One interesting feature revealed in Figure 5.3 and Figure 5.4 is the extremely high enhancement
and extraordinary compression of graphene plasmon waves in the cavity above the ridge. In
Figure 5.8, we show the intensity distributions for three special cases. In the previous chapter,
we have already shown that the electromagnetic field can be extraordinary compressed by
being trapped in a very shallow cavity (the compression factor is about ∼ 400) and high
enhancement (∼ 4000) of graphene plasmon waves could also be realized under certain
conditions. However, those two phenomena could not appear in the same system. Thus, when
designing the configuration in practice, we need to balance the confinement and the intensity
of the field. In the current work, we achieve both extremely high enhancement (∼ 10000) and
extraordinary compression (the compression factor is about ∼ 1000) in the same system. This
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Figure 5.6: The dependence of the phase shift δφ2 on the gap thickness, for a TM polarized, normal
incidence at a fixed wavelength λ0 = 12µm, where media I and II are air, medium III is SiC, L1 =
1.135µm and EF = 0.64eV . The data points are obtained from the numerical simulations. And the
lines are obtained using the spline fit of the data points.

is because: (i) the very small gap above the ridge makes the extraordinary compression possible,
and (ii) the optimized trench height hugely enhances the conversion efficiency. It should be
noted that we could even achieve higher enhancement and more extraordinary compression
by further optimizing the parameters of the system. Another interesting feature is that the
intensity distributions in those two types of cavities (one is in the trench, and one is in the
gap) are totally different. It can be understood that the electric intensity has two contributions,
the x- and z-components of the electric field. From the previous study, we know that the
vertical Fabry-Pérot effect dominates the contribution of the x-component, while the horizontal
Fabry-Pérot effect dominates the contribution of the z-component. In the current work, both
contributions in the trench cavity are strong, because of the optimized trench height. However,
the contribution of the z-component dominates the intensity of the electric field in the gap above
the ridge, because of the small gap thickness. This was confirmed by the intensity distribution
in Figure 5.8. Interestingly, the energy is mainly trapped in the cavity above the ridge, even
though the GPs in both types of cavities are excited. Most notably, compared to previous work,
the extremely high field enhancement and extraordinary compression of GPs are achieved
simultaneously, thanks to the combination of the shallow cavity and the deep cavity in the same
configuration. The extremely high field enhancement is extraordinarily compressed in a very
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Figure 5.7: (a) Graphene layer absorption (PGabs) for the SiC grating plus graphene structure versus the
ridge length (L2) and the gap thickness (h2). The black dash-dot curves indicate a fit to a Fabry-Pérot
model for a phase shift of −π, while the blue dashed ones indicate a fit to a Fabry-Pérot model for a
phase shift with values as Figure 5.6 shows. An zoomed-in view of the region in the red dashed box is
also given. The blur is due to the step resolution in the simulation. (b-d) Near-field distribution of Ez
for three cases marked as points A, B, and C in (a).The corresponding parameters are as follows: (b)
L2 = 1.310µm and h2 = 0.012µm, (c) L2 = 1.310µm and h2 = 0.022µm, (d) L2 = 1.310µm and
h2 = 0.058µm. The electric field is normalised to the incident field magnitude. The same colorbar is
used.

small region around the graphene layer providing high potential for applications in molecular
sensors, solar cell and integrated optics.

5.7 Tunability of the Fermi Energy
Compared to the counterpart on the surface of metallic materials, graphene plasmonic modes
are particularly appealing thanks to the ultra-broad and fast tunability of the Fermi energy
via chemical doping or electrical doping. In this part, we will tune the peak positions in the
absorption spectra by tuning the Fermi energy. The graphene absorption with a different Fermi
energy is shown in Figure 5.9a. Compared to the results in Figure 5.3, one feature revealed
in Figure 5.9a is that the ridge length and the trench length corresponding to each peak vary
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Figure 5.8: The extremely high intensity (E2) distribution and the extraordinary compressed plasmonic
waves trapped in the cavity above the ridge for three cases marked as points A, B, and C in Figure 5.6. The
corresponding parameters are as follows: (a) L2 = 1.310µm and h2 = 0.012µm, (b) L2 = 1.310µm
and h2 = 0.022µm, (c) L2 = 1.310µm and h2 = 0.058µm. The enhancement around the graphene
layer and the compression factor of λ0/h2 in those three cases are as follows: (a) 9521.0 and 1000, (b)
5408.2 and 545.5, (c) 1758.9 and 206.9. Distribution of the intensity along a line positioned at 0.5nm
below graphene layer is given as well.

with the variation of the Fermi energy. This is because the dispersion relation of the graphene
plasmonic waves strongly depends on the Fermi energy. The excellent agreement between the
predictions and the numerical results confirms again the validation of the proposed model. It
should be noted that the value of the phase shift δφi strongly depends on the Fermi energy of
the graphene layer. The near-field plots for points marked as A and B in Figure 5.9a are given in
Figure 5.9b and c. This feature makes the system a cheap, reliable, ultra-fast and highly tunable
optical modulator.

5.8 Variation of the Refractive Index of the Filling Medium
The previous discussions only consider the free-standing graphene layer that served to simplify
discussion and the understanding of the physical mechanism. In this part, we consider a simple
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Figure 5.9: (a) Graphene layer absorption (PGabs) for the SiC grating plus graphene structure versus the
trench length (L1) and the ridge length (L2), when the gap thickness is 0.005µm. The normal incidence
is TM polarized at a wavelength λ0 = 12µm, where media I and II are air, medium III is SiC, and
EF = 0.84eV . The dashed lines indicate a fit to a Fabry-Pérot model for a phase shift of −π. The black
solid lines indicate a fit to a Fabry-Pérot model for a phase shift of −1.085π, while the blue solid ones
indicate a fit to a Fabry-Pérot model for a phase shift of −0.77π. (b-c) Near-field distribution of Ez
for three cases marked as points A and B in (a). The modes supported in the gap and the trench are
different for those two cases. The corresponding parameters are as follows: (b) L1 = 1.461µm and
L2 = 1.176µm, (c) L1 = 1.461µm and L2 = 2.381µm. The electric field is normalised to the incident
field magnitude. The same colorbar is used.

but more realistic configuration: The gap above the ridge and the trench are filled with a
dielectric medium with the refractive index n, which could be easily realized by depositing
oxides or an organic layer in practice. As an example, we set n = 1.5, and analyze the graphene
absorption and the excited modes, as shown in Figure 5.10. As expected, the peak positions still
agree well with the predictions from Equation 4.14 shown in Figure 5.10a. It should be noted
that the value of the phase shift δφi strongly depends on the refractive index n of the material
in the gap and the trench. To verify the supporting modes, the near-field distribution of Ez
for two cases marked as points A and B in Figure 5.10a is given in Figure 5.10b and c, which
agrees excellently with the theoretical prediction. Another interesting feature is that the field
intensity for those two cases is much lower than the case in Figure 5.3 and Figure 5.4 (where
n = 1). This is mainly due to the fact that, in the trench, SPhPs are excited, and a vertical SiC
Fabry-Pérot cavity is established. When the refractive index n of the dielectric medium changes,
the condition (here, the trench height) of the Fabry-Pérot resonance would be different. When
n = 1, the resonance exists for certain trench height, while the resonance disappears for the
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Figure 5.10: (a) Graphene layer absorption (PGabs) for the SiC grating plus graphene structure versus
the trench length (L1) and the ridge length (L2), when the gap and the trench are filled with a dielectric
medium with the refractive index n = 1.5. The normal incidence is TM polarized at a wavelength
λ0 = 12µm, where media I and II are air, medium III is SiC, EF = 0.64eV , and the gap thickness is
0.005µm. The dashed lines indicate a fit to a Fabry-Pérot model for a phase shift of −π. The black solid
lines indicate a fit to a Fabry-Pérot model for a phase shift of −1.14π, while the blue solid ones indicatie
a fit to a Fabry-Pérot model for a phase shift of −0.5π. (b) and (c) Near-field distribution of Ez for two
cases marked as points A and B in (a). The corresponding parameters are as follows: (b) L1 = 1.363µm
and L2 = 1.174µm, (c) L1 = 2.021µm and L2 = 1.174µm. The electric field is normalised to the
incident field magnitude. The same colorbar is used those plots.

same trench height when n = 1.5. These findings confirm the validity of the established model,
and could make the system a potential design for sensing and integrated optics.

5.9 Conclusions
In conclusion, we have established the model of suspended graphene plasmon cavities. In the
proposed model, the Fabry-Pérot equation is used to predict the conditions for the GP resonance
in two types of cavities (in the trench and above the ridge), and the dispersion relation of GPs
in a general multilayer system is applied to calculate the GP wavelength at different values of
the cavity height. The excellent agreement between the predictions from this proposed model
and the numerical results confirms the validity of the proposed model. Remarkably, we also
have achieved the extremely high field enhancement and extraordinary compression of GPs
simultaneously, thanks to the combination of the shallow cavity and the deep cavity in the same
configuration. The tunability of the Fermi energy and geometric parameters of the cavities
make the design of this system very versatile. We expect the investigated system using the
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combination of the shallow and deep cavities to open up numerous potential applications in
molecular sensors, solar cell and integrated optics.
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Conclusions & Future Outlook

6.1 Conclusions
In this section, we offer a summary of the work presented in this thesis.

First, we proposed tunable plasmonic cavities working at the mid-infrared frequencies using a
monolayer of graphene deposited on a SiC grating. We observed that SiC behaves like a perfect
conductor within the Reststrahlen band, providing a cavity effect to generate standing waves of
graphene plasmon inside SiC cavities. We focused on establishing a simple model of such GPs
cavities by considering a Fabry-Pérot model in the horizontal cavity direction. In this model,
the commonly used dispersion relation of GPs was applied to calculate the wavevectors of GPs.
In addition, we analysed the strong interaction between localized SPhPs of SiC and SPPs of
graphene, revealed by a phenomenon called Rabi splitting.

Next, we revealed that there is an assumption in this commonly used dispersion relation: that the
materials above and below the graphene layer are assumed to occupy the corresponding semi-
infinite spaces. This assumption is valid when the SiC cavity is sufficiently deep (> 500nm),
however, it fails when the cavity height is smaller than 500nm. We derived an analytical
expression for the dispersion relation in a multilayer system, illustrating the cavity height
dependence. Base on this analytical expression, we improved the previously proposed Fabry-
Pérot model in the horizontal direction. In addition, we observed a Fabry-Pérot effect in the
vertical cavity direction. We even achieved complete absorption under certain parameters and
realized the high enhancement and extraordinary compression of graphene plasmon waves.

Finally, we investigated the GPs in a graphene layer suspended above a SiC grating with a small
gap between the two. Based on the derived dispersion relation, we established the model of the
suspended graphene plasmon cavities, which was confirmed by the comparison between the
theoretical results and the numerical ones. In addition, we successfully simultaneously excited
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GPs with extremely high field enhancement and extraordinary field compression by combining
a shallow cavity and a deep cavity in the same configuration.

All these findings pave the way to build simple tunable plasmonic structures, and make this
system an ideal setup for various vital applications, such as photodetection, molecular sensing
and integrated optics.

6.2 Outlook
On the basis of the existing work in this thesis, some of the most important research directions
in this field are as follows:

1. Explore new geometries and new frequencies. Current studies usually focus on the
simplest geometries such as rectangles and squares. However, because the optical
behaviour of the system strongly depends on its structure, it is important to consider
other geometries, such as Archimedean spiral slits [21] and closely spaced subwavelength
apertures [153], that can be used to excite the GPs and to introduce special optical
properties. On the other hand, metal plasmonics exist in the visible and near-infrared
frequencies, enabling a number of applications, such as single molecule detection. Indeed,
other ranges of frequencies could benefit from the high field enhancement and strong
field confinement due to SPPs. For example, there is a high demand for molecular
sensing at far-infrared frequencies [54, 154–156] and security detection at terahertz
frequencies [157, 158]. Exploring new geometries and new frequencies could increase
the versatility of plasmonic devices.

2. Discover new material platforms.

The types of materials that are widely studied in plasmonics have largely fallen into
two categories: noble metals and graphene. They work in different frequency ranges
and exhibit different optical proprieties. Often, it is the use of a new material platform
that enables existing technologies to find application in new domains. Therefore, there
is still a great demand for discovering novel materials with distinguishing properties,
such as low loss, high tunability and diffident operating frequencies, as constituents in
plasmonics. For example, in the past few years, hexagonal boron nitride has emerged
as a promising alternative. In addition, this material is a natural hyperbolic material,
exhibiting an extreme optical property known as in-plane hyperbolicity. This material has
great potential to lead to the highly integrated optical components in the infrared range.

3. Investigate nonlinear effects in graphene plasmons.
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So far, metals are widely used in the study of nonlinear optical effects [159]. These
nonlinear processes are usually intrinsically weak and strongly depend on the local field
enhancement [160]. However, due to the nature of SPPs on metals, only the surface
of the metals can be used and the field enhancement is very limited. There are two
solutions: First, we could used the volume effect, which means dielectrics could be
used to improve the conversion efficiency. However, this is out of the scope of this
thesis. Second, we could hugely enhance the field enhancement by introducing new
materials and new physical effects. As mentioned in this thesis, the extremely high field
enhancement of GPs is observed, which could be applied in the study of nonlinear optical
effects. It is worth noting that this strong enhancement could be extremely compressed in
the gap, providing great nonlinear response (which could be used for the single-molecule
detection).

4. Propose applications and conduct experiments.

Certainly, practice is the sole criterion for testing truth. Current studies focus on the
theoretical investigation, which could offer us the effective guidelines in the experiments.
There exist some possible challenges: First, in the simulation, we did not consider the
defects of graphene. However, until now the quality of graphene in the lab is still not
perfect. Second, the fabrication of nanostructures is still very challenging, due to extreme
hardness of the material used here (SiC is regarded as the second hardest material after
diamond). Third, there is still less equipment in the detection in mid-infrared compared
to the ones in visible. Overcoming these challenges will require the development of new
technologies.
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Finite Difference Time Domain

FDTD is a time domain method that is used to numerically solve Maxwell’s equations with
finite-difference approximations. It is intuitive to observe the evolution of fields over time and
the transient response. In this appendix, we will introduce the main concept of this method.

A.1 Flow of Maxwell’s Equations

Figure A.1: Main concept of finite difference time domain. Here, we assume the materials involved
in the system are linear, isotropic and non-dispersive. Otherwise, the permittivity and the permeability
should be in the more general forms - the tensor forms ([ε(r, t)] and [µ(r, t)]). In addition, the cases
without external charge (ρext = 0) and current (Jext = 0) densities are considered.

Maxwell’s equations and constitutive relations provide a mathematical model of classical
electromagnetism, forming the foundation of classical optics. In reality, the electric and
magnetic fields are simultaneously coupled and evolving at the same time. However, in FDTD
the evolution is approximated as a sequence of events as shown in Figure A.1: We will begin
with the upper left box of the figure. First, we assume that the electric field E is known at
a starting time point. Based on the Faraday’s law, we update the magnetic induction B by
calculating the curl of the electric field. Then, we calculate the magnetization field H through
the constitutive relation. Later, the electric displacement D is updated by calculating the curl
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of the magnetization field, based on the Ampère’s law. After that, the electric field E can be
calculated by incorporating the material information through the constitutive relation. Now we
know the electric field E again, however, it should be noted that this electric field E is at the
next time point. We can carry on this process to evolve the fields forwards in time. Choosing a
smaller time step can improve the accuracy of the evolution.

A.2 Approximating the Time-derivatives
In the previous section, we introduce the main concept of FDTD: the electric and magnetic
fields are updated step by step. Here, we briefly describe how to approximate time-derivatives
by applying finite-difference approximations. There are three forms of finite differences that
are commonly used. They are forward, backward, and central differences. The central one
is the most frequently selected one in FDTD. Therefore, the time derivatives of the magnetic

induction and the electric displacement,
∂B
∂t

and
∂D
∂t

, can be approximated by the following
expressions in FDTD

B(t+ ∆t
2 )−B(t− ∆t

2 )
∆t , (A.1)

and

D(t+ ∆t)−D(t)
∆t . (A.2)

The staggering of the magnetic induction and the electric displacement in time ensures that B
and H exist at half time steps (∆t/2, t + ∆t/2, 2t + ∆t/2,...), and D and E exist at integer
time steps (0, ∆t, 2∆t,...).

Based on the Maxwell’s equations, we can easily get the following “update equations”

B|t+∆t/2 = B|t−∆t/2 −∆t∇× E|t, (A.3)

and

D|t+∆t = D|t + ∆t∇×H|t+∆t/2, (A.4)

Indeed, the curl of fields can also be treated using the finite-difference approximations. However,
this is out the scope of this thesis, and thus it is not presented here.
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A.3 Algorithm of Finite Difference Time Domain
In the previous section, we introduced the “update equations”, which are applied to calculate
the fields at the next time step within the FDTD loop. There exist some other important parts in
the FDTD algorithm, as shown in Figure A.2. At the very beginning, all fields are initialized
to zero, and then we enter the FDTD loop. However, nothing interesting happens if there
is no power enters the system. Therefore, we need to handle the electric and magnetic field
sources at certain points during the simulation by overwriting some of the field values. Next,
the simulation boundaries should be paid special attention according to different requirements.
For example, it is very common to prevent reflections by padding the simulation with a fictional
material that is both reflectionless and absorbing, known as a perfectly matched layer. Then,
the simulation data must be recorded and the simulation status should be shown during the
simulation. Once the condition of the cycle is satisfied, we should post-process the recoded
data. We usually judge whether the condition is satisfied by judging whether the energy escapes
from the simulation region. This is because in FDTD the source is a pulse and the energy must
exist the system after some time. Thus, it is very inefficient for highly resonant devices. In the
post-process, the Fourier transform is applied to the record data in order to get the results in the
frequency domain.

Figure A.2: Algorithm of finite difference time domain. The main concept of FDTD is shown in Figure
A.1.
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Finite Element Method

To describe laws of physics, scientists have established a number of mathematical models, which
usually consist of partial differential equations. Although some analytical solutions exist (such
as Mie theory for a sphere), these equations cannot be analytically solved. Therefore, different
numerical approaches have been established to calculate approximate numerical solutions.
Apart from FDTD, FEM is an excellent alternative and is frequently used to approximate
solutions to boundary-value differential equations by discretizing the geometrical domain into a
set of sub-domain elements. In this appendix, we will give an brief overview of FEM. Although
FEM can also be used to solve time-domain problems, we will focus on frequency domain
problems.

Although FEM is a versatile method that can be applied in a variety of fields, such as structural
mechanics, heat transfer, fluid flow, acoustics, and chemical engineering, we illustrate the
concept of FEM using a one-dimensional problem in electromagnetism here, as shown in Figure
B.1. Considering the homogeneous material cases without external charge density (ρext = 0)
and considering the time-harmonic dependence of the electric field, we can combine the two
curl-equations as follows

∇×∇× E− ω2εε0E = iωJ. (B.1)

Furthermore, when the invariance of the system in two directions is considered, this equation
can be reduced to the following form

∂2Ex
∂x2 + ω2εxε0Ex = −iωJx, (B.2)

whereEx and εx are the x-component of the electric field and permittivity, respectively. Equation
(B.2) is a strong form, because this equation holds for all points in the domain, Ω.

By assuming
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Figure B.1: Main concept of finite element method. The solid blue curve represents the exact solution
that is denoted by a function Ex. The dashed red line represented by a approximation Ẽx, which is a
linear combination of a set of basis functions. These basis functions {vi} are denoted by the solid purple
lines, and the coefficients are represented by {ei}. The domain is denoted by a letter Ω.

Ẽx ≈ Ex, (B.3)

we easily get

∂2Ẽx
∂x2 + ω2εxε0Ẽx + iωJx = Res(x) 6= 0, (B.4)

where Res(x) denotes the residual. We assume that there exists a set of test functions {wi}, and
the projection of the residual onto the test functions vanishes

∫
Ω

Res(x) · wi(x)dx = 0. (B.5)

By inserting the expression for Res(x), we get

∫
Ω

(
∂2Ẽx
∂x2 + ω2εxε0Ẽx + iωJx

)
wi(x)dx = 0 (B.6)

We can split this equation into parts, and after integration by parts, we get
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ω2
∫

Ω
εxε0Ẽxwidx−

∫
Ω

∂Ẽx
∂x

∂wi
∂x

dx+ [wi
∂Ẽx
∂x

]xN
x0 = −iω

∫
Ω
Jxwi(x)dx. (B.7)

This equation is a weak form, because this equation relaxes the requirements of Equation (B.2)
by only requiring equality in an integral sense. With this weak formulation, we can transfer the
mathematical model of this electromagnetism problem to a numerical model by discretizing the
whole domain into sub-domains which is known as elements as shown in Figure B.1. This is
why this method is known as the finite element method. We assume that Ẽx can be expressed
as an expansion of a set of basis functions {vi}

Ẽx =
N∑
j=0

ejvj(x), (B.8)

where ej denotes the coefficients of the function. Once the coefficients here are calculated, the
problem is solved. It should be noted that there are an infinite number of choices for the basis
functions {vi} in theory. Therefore, we can get

N∑
j=0

(
ω2
∫

Ω
εxε0wivjdx−

∫
Ω

∂wi
∂x

∂vj
∂x

dx+ [wi
∂vi
∂x

]xN
x0

)
ej = −iω

∫
Ω
Jxwi(x)dx. (B.9)

This equation can be expressed in a matrix-form when considering

M→ {Mij},S→ {Sij},G→ {Gij}, e→ {ej},F→ {Fj}, (B.10)

where

Mij =
∫

Ω
εxε0wivjdx, (B.11)

Sij =
∫

Ω

∂wi
∂x

∂vj
∂x

dx, (B.12)

Gij = [wi
∂vi
∂x

]xN
x0 , (B.13)

Fj = −iω
∫

Ω
Jxwi(x)dx. (B.14)

M consists of the material parameters of the system, and thus it is often referred to as the
material matrix. S only contains the spatial derivative of the test and basis functions, and
therefore it is called as the stiffness matrix. G includes the boundary conditions. e is the vector
of unknowns, containing all the values of the electric field. F represents the source. Then,
Equation (B.9) can be expressed in the following compact form

(ω2M− S + G)e = F. (B.15)
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We note that this matrix-equation can be easily solved, because the elements of M, S, G, and
F are known quantities which can be easily calculated in most case, and the test and basis
functions can be properly selected. Sometime, the source F is not known, Equation (B.15) can
be simplified into a form for a generalized eigenvalue problem as follows

(S−G)e = ω2Me. (B.16)

According to the above, the basic step in FEM formulation can summarized as follows: First,
a strong formulation is established. Second, we derive the weak formulation based on the
strong formulation. Third, approximations for unknown functions is chosen. Fourth, basis
functions are properly selected. Finally, we numerically compute the unknowns by solving the
matrix-equation. Although there exist many technical details at each step, these are outside of
the scope of this thesis.
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Fabry-Pérot Model

In this appendix, we will briefly introduce the Fabry-Pérot cavity and the Fabry-Pérot model.

Figure C.1: Sketch of a Fabry-Pérot cavity: this cavity consists of two two optical reflectors, M1 and
M2, with a distance L. The reflectivities of the two reflectors are R1 and R2, and the corresponding
transmissions are given as T1 = 1−R1 and T2 = 1−R2. The cavity is filled with a material with the
reflective index n and absorption coefficient α. A plane wave propagates with an angle θ relative to the
reflector normal.

A Fabry-Pérot cavity, also known as a Fabry-Pérot resonator, a Fabry-Pérot interferometer, or
a Fabry-Pérot interferometer etalon, is a linear optical cavity consisting of two plane parallel
optical reflectors with high reflection as shown in Figure C.1. The two reflectors are denoted as
M1 and M2 and with reflectivities R1 and R2. The cavity has a thickness L and is filled with a
material with the reflective index n and absorption coefficient α. In Figure C.1, we consider a
plane wave with a wavelength λ0 propagating in the cavity at a angle θ relative to the reflector
normal. Due to the multiple reflection at the surfaces of the two reflectors, those multiple
reflected fields will interfere within the cavity. Assuming a electric field Ei is modified to
become Ei+1 after one round trip in the cavity, the two electric fields has the following relation

Ei+1 = r exp(iΦ)Ei, (C.1)
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with

r = (R1R2)1/2 exp[−2(α/2)L/ cos θ], (C.2)

and

Φ = 2π
λ0

2nLcosθ + δφ1 + δφ2, (C.3)

where δφ1 and δφ2 are the phase changes due to the complex reflection amplitudes at the two
reflectors. Considering the interference between the multiple reflections, we can get total field
E inside the cavity as follows

E =
∞∑
i=1

Ei = E1

1− r exp(iΦ) . (C.4)

Therefore, we could easily obtain the field intensity inside the cavity

I = |E|2 (C.5)

= I1

(1− r cos Φ)2 + r2 sin Φ2 (C.6)

= I1/(1− r)2

1 + (2F/π)2 sin2(Φ/2) , (C.7)

with

F = πr1/2

1− r , (C.8)

where F denotes the finesse of the Fabry-Pérot Cavity. This equation demonstrates that the
field intensity I inside the cavity is a periodic function of Φ with a period 2π. When the finesse
F is large enough, the intensity I becomes a periodic function with sharp peaks positioned
at Φ = 2mπ, where m is an natural number denoting the resonance mode order. It should be
noted that constructive interference occurs and standing waves form within the cavity when this
condition is fulfilled.

In our case, the following assumptions are satisfied: First, there is no difference between the
two reflectors, meaning R1 = R2 = R and δφ1 = δφ2 = δφ. Second, the refractive index in the
cavity is indeed the effective reflective index <{Neff} in our case. Third, the wave inside the
cavity propagates perpendicular to the surfaces of the two reflectors, meaning θ = 0o. Therefore,
we arrive at the well-known Fabry-Pérot model,
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δφ+ 2π
λ0
<{Neff}L = mπ. (C.9)

The transmission spectra through such Fabry-Pérot cavities exhibit sharp resonances, and hence
the Fabry-Pérot cavity is often used as an optical filter. For example, it can be used in a optical
spectrometer to improve the spectrum resolution of the setup.

Although the mirrors included in the strict definition of the Fabry-Pérot interferometer should
be two planar mirrors, this term has already been frequently used for resonators with any curved
mirrors. In addition, when the cavity is filled with gain materials, the amplitude of the field will
be amplified. Indeed, the Fabry-Pérot model is a significantly important concept in the field of
laser. However, this is out the scope of this thesis.
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