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Abstract

Topological nanophotonics combines the high sensitivity of nanophotonic systems with
the robustness of topological states, presenting an exciting new platform for both nanotech-
nological applications and fundamental research in topological light-matter interactions [1].
The work I present in this thesis focuses on topological insulator (TI) nanostructures
and their interactions with light, with particular focus on the terahertz (THz) regime.

TIs are insulating in their bulk and host symmetry-protected, conducting surface states
which are robust against disorder [2]. These surface states manifest as a Dirac cone traversing
the bulk band gap. TI nanostructures (all dimensions ≤ 100 nm) exhibit a discretised
Dirac cone due to quantum confinement of the topological surface states, with energy levels
separated by THz frequencies. Due to their analogy with semiconductor quantum dots and
2D topological insulator quantum dots, I refer to this system as a topological quantum
dot (TQD).

The results of this thesis are organised thematically into three areas:

(i) I expand the current knowledge of TI nanostructure electronic structures, de-
scribing the surface states and energy levels for geometries ranging from the infinite
nanowire to a flat nanodisk within a single mathematical framework [3].

(ii) I investigate the coupling of TQD states with THz frequency light, including selection
rules and the suppression of transitions away from the Dirac point when the TQD is
placed in a high quality cavity, allowing for a closed system of energy levels. Using
Monte Carlo simulations I demonstrate that a single TQD in a cavity will lase
in the THz, with an ultra-low threshold. The creation of robust, low threshold
lasers in the THz regime is a crucial frontier in modern applied physics, due to the
notorious absence of practical technologies for generating and sensing radiation in
the THz gap (0.1− 10 THz). I show that thermal photons are abundant enough to
pump the system, and present a road map to room-temperature THz lasing with no
additional external pumping source [4].

(iii) I describe how the quantised TI surface states modify the bulk properties of the
nanostructure via a new polariton mode (the SToP mode) [5], and present the
first experimental evidence of the SToP mode [6]. I demonstrate how the SToP
mode can be used to manipulate the THz behaviour of light in the environment
surrounding a TI nanostructure, by increasing the photonic local density of
states by many orders of magnitude [7]. This phenomenon has potential applications
in nanotechnology and also presents a new way of probing topological properties of
matter using light.

I hope that this thesis serves as a guide to students new to the wonderful and interdisciplinary
topic of topological nanophotonics, and that my work contributes to a slightly better
understanding of topological light-matter interactions at the nanoscale, and the manipulation
of THz frequency light.
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Nomenclature

Here I include the nomenclature used in this thesis. This list is non-exhaustive, and
variables with superscripts and subscripts are not distinguished. Some symbols have
multiple meanings across chapters, in order to not stray too far from standard symbol use,
and their meaning is hopefully clear from context.

Acronyms and abbreviations

Acronym/abbreviation Word/phrase
1D/2D/3D 1/2/3 dimensional
A.U. Arbitrary units
Bi2Se3 Bismuth selenide, chemical compound
Bi2Te3 Bismuth telluride, chemical compound
Bi Bismuth, chemical element
DFT Density functional theory
DOS Density of states
E1 Electric dipole
E2 Electric quadrupole
EM Electromagnetic
FQH Fractional quantum Hall
FT Fourier transform
IQH Integer quantum Hall
IR Infrared
Laser Light amplification by stimulated emission of radiation
LDOS Local density of states
LRE Long range entanglement
LSPP Localised surface plasmon-polariton mode
M1 Magnetic dipole
MC Monte Carlo
QH Quantum Hall
QL Quintuple layer
QSH Quantum spin Hall
QSHO Quantum simple harmonic oscillator
Sb Antimony, chemical element
Sb2Te3 Antimony telluride, chemical compound
Se Selenium, chemical element
SOC Spin-orbit coupling
SRE Short range entanglement
SToP mode Surface Topological Particle mode
Te Tellurium, chemical element
TEM Tunneling electron microscope
TI Topological insulator
TINP Topological insulator nanoparticle (usually equiaxial)
TIQD Topological insulator quantum dot (made with 2D TI)
TQD Topological quantum dot (made with 3D TI)
TR Time reversal
Z Set of all integers
Zp Set of all integers modulo p
Z≥ Set of all non-negative integers
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Constants

All constants are given in S.I. units unless otherwise stated.

Symbol Definition Value
A0, B0 DFT-determined constants parameterising

SOC strength, given in Table 2.1
A = (2A0 +B0)/3 Assumption of SOC isotropy 2.0 (3.0) eV Å for

Bi2Te3 (Bi2Se3)
α Fine structure constant 7.30 · 10−3

Å Angstrom (not an SI unit) 10−10 m
c Speed of light 3.0 · 108 ms−1

C0, C1, C2 DFT-determined constants parameterising
particle-hole disparity, given in Table 2.1.

e Electron charge 1.6 · 10−19 C
eV Electron volt 1.6 · 10−19 V
ε0 Permittivity of free space 8.85 · 10−12A2s2N−1m−2

GHz Gigahertz 109 Hz
h Planck constant 6.6 · 10−34 m2kg s−1

~ Reduced Planck constant 6.63× 10−34Js
kB Boltzmann constant 1.38 · 10−23 m2kg s−2 K−1

me Electron mass 9.1 · 10−31 kg
m0,m1,m2 DFT-determined constants parameterising

the effective mass term, given in Table 2.1.
µ0 Permeability of free space 1.3 · 10−6m kg s−2A−2

nm Nanometre 10−9 m
THz Terahertz 1012 Hz

Variables, operators etc

Symbol Definition
a Lattice parameter, constant of dimension [L] (Chapter 4)
A(r, t) Magnetic vector potential
A(r) Vector field
a∗β,k(t) (aβ,k(t)) Time-dependent Fourier coefficients
a†β,k(aβ,k) Bosonic creation (annihilation) operators for mode (β,k)
α Intrinsic loss factor
α(ω) Polarizability
B(r, t) Magnetic flux density
B(r) Source function
β Photon polarisation index
D(r, t) Electric displacement field
d(e1, e2) Metric on a surface parameterized by e1, e2.
δR(ν) Contribution of topological surface states to time-dependent

charge density shift
e Unit vector
ε0(k) Particle-hole disparity, characterised by DFT-determined

constants, C0, C1, C2.
E Energy
Eg, A1g, Eu, A1u Phonon modes. E(A) denotes in-plane (out-of-plane), g (u)

denotes Raman (IR) active modes.
ε(ν) Dielectric function
E(r, t) Electric field strength
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Symbol Definition
Ẽ(r, ω) FT of electric field strength
E(r) Electric field spatial variation
(ζ, τ, ϕ) Oblate spheroidal coordinates
f(ω) Probability distribution
F Purcell factor
F (τ), G(τ), H(τ) Coefficients of general 2nd order ODE
g Genus
g(ω) Density of states
g(r, ω) Local density of states
gz(ω) Partial density of states
g(k) Density of states in k-space
G Gain
G0(r, r′) Scalar Green’s function
G(r, r′) Dyadic Green’s function
γ Harmonic broadening parameter
Γ Rate
h Height
hσ, hτ , hϕ Prolate spheroidal scale factors
hζ , hτ , hϕ Oblate spheroidal scale factors
H Hamiltonian
H̃(r, ω) FT of Hamiltonian
H(r, t) Magnetizing field
Θ Anti-unitary matrix
I(t) Current
J(r, t) Current density
Jµ,νn (x) Jacobi polynomials
k Wave vector
k = |k| Modulus of wave vector
K Curvature
κ Decay constant
L Length
L Linear operator
λ Wavelength
λi Dimensionless eigenvalues such that Ei ∝ λi

m(k) Effective mass term, characterised by DFT-determined
constants, m0,m1,m2

M Manifold
M(r, t) Magnetization field
µ Relative permeability
µ(t) Dipole moment
n Chern number
n̂ Unit normal vector
nα,k Photon number in mode (α,k)
N Occupation number
N0 Steady-state occupation number
N+, N− Number of up-tending and down-tending edge states
ν Frequency
pi→f Probability
P1±α , P2±α Bonding, anti-bonding states
P(r, t) Polarisation field
p Momentum
P0 Average radiated power
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Symbol Definition
P Power
q(t) Charge
Q Quality factor
R Radius
R(t) Temporal component of the electric field strength
r Position vector
(r, ϑ, ϕ) Spherical coordinates
ρ(r, t) Charge density
u(r) Periodic function
(s, n,m) Quantum numbers of TI nanostructure surface states
S Surface area
S Poynting vector
S(ω) Spectral density
σxy Hall conductivity
σi→j Interaction cross-section for transition i→ j
σabs(ν) Absorption cross-section
(σ, τ, ϕ) Prolate spheroidal coordinates
σ1,σ2,σ3 Pauli matrices
t Time
T Time period, temperature (Chapter 5)
Tf Time-reversal operator
τ Time scale
u(r) Displacement vector
u(ω) Energy spectrum
v Band index
V Volume
Vi,f Matrix element for transition i→ f
W Work done
ω = 2πν Angular frequency
(x, y, z) Cartesian coordinates
χ Angular part of wavefunction such that Ψ ∝ χ
Ψ Wave function
|Ψ〉 Quantum state
Φ(r, t) Scalar potential
Ω General symmetry operator
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1. Introduction

"A physicist is just an atom’s way of looking at itself."
- Niels Bohr1

One of the ultimate aims of modern science is the precise control of photons at the nanoscale.
This is paramount for both nanotechnological applications and fundamental research in
light-matter problems. Topological nanophotonics offers a promising path towards this
goal [1, 10]. A key feature of topological condensed matter systems is the presence of
topologically protected surface states immune to disorder and impurities. These unusual
properties can be transferred to nanophotonic systems, allowing us to combine the high
sensitivity of nanoscale systems with the robustness of topological states. This neoteric2

field is already rewarding us with a plethora of potential new applications and increased
physical insight into the nanoscale world.

Topological photonics is an umbrella term for systems involving light and some sort of
non-trivial topology. When discussing topological photonics at any scale, the most commonly
invoked idea is that of purely photonic systems with non-trivial topology [1, 11–14].
In these systems, electromagnetic fields take the place of electronic wave functions to mimic
the band structure and topological properties of known topological electronic systems.
Topological photonic systems with no electronic counterpart can also be produced, leading
to topological behaviours uninhibited by the constraints of solid state systems. Excellent
and extensive reviews already exist on these photonic topological systems [12, 13], and I
will not cover the topic in any detail here. Topological photonics also covers the topic of
topological electronic systems interacting with light [6, 15–20] and this is the area
of focus in this thesis. The interaction between light and matter is arguably one of the
most fascinating topics in modern physics, and also one that has brought us a myriad of
technological advances. The burgeoning field of topological condensed matter adds yet
another route to new physics and new applications.

Nanostructures are material structures with dimensions on the order of 1-100 nm (where
nm = 10−9 m) and may be comprised of as little as a few hundred atoms, making them an
ideal platform for studying quantum mechanical effects. In particular, surface effects are

1Bohr was a foundational contributor to quantum theory and atomic physics, receiving a Nobel prize
in 1922. Heisenberg said of Bohr that he was primarily a philosopher, not a physicist. He also helped
refugees escape the Nazis in the 1930s and he was eventually part of the Manhattan Project after escaping
Nazi-occupied Denmark via Sweden. Worried about how the atomic bomb created by the project would
be used, he was a fierce advocate of international arms control, and had a vision of countries abandoning
isolationism in favour of true cultural exchange. On his return to Europe after the war he helped to establish
CERN and also created the Atoms for Peace conference [9].

2Neoteric: New or modern; recent.
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amplified in nanostructures due to their increased surface-to-volume ratio, making them
especially useful in the study of topological surface states. The advances in our theoretical
knowledge of electronic structures, as well as experimental capabilities at the nanoscale
allow us to probe matter at this unique length-scale with unprecedented control.

In the work of this thesis I focus specifically on topological insulator nanostructures
interacting with light. 3D topological insulators present an exciting class of materials
which have challenged our understanding of condensed matter physics and demanded the
development of new paradigms to describe their unusual properties. These materials support
symmetry-protected, conducting surface states despite an insulating bulk. The surface
states behave as relativistic, massless fermions described by a Dirac cone in the material
dispersion relation. In very small (i.e. all dimensions . 100 nm) topological insulator
nanostructures, quantum confinement of the surface states leads to a discretized Dirac
cone, with constant spacing between the discrete energy levels tunable with material type,
nanostructure size and shape. The energy levels of the structure can be coupled with
THz frequency light, and in analogy with semiconductor quantum dots and topological
insulator quantum dots3 (TIQDs) I refer to this system as a topological quantum dot4

(TQD) at various points throughout this thesis. The detection and production of THz
light is a crucial frontier in modern applied physics, due to the notorious absence of
practical technologies for generating and sensing radiation in the THz gap (0.1-10 THz),
with applications in areas such as agriculture [21, 22], manufacturing [23], bio-medicine [24,
25], wireless communications [26, 27] and security technologies [28]. THz waves penetrate
materials opaque to other wavelengths, while posing only minimal risks due to their non-
ionizing behaviour (unlike for example, x-rays). Academic applications range from molecular
spectroscopy [29–31] to sub-millimetre astronomy [32, 33], influencing physics on vast length
scales. The study of topological insulator nanostructures interacting with THz light thus
presents an exciting new platform for both fundamental research in topological
light-matter interactions and for nanotechnological applications.

This thesis sits at the interface of topological condensed matter and photonics. Con-
scious that the reader may only be expert in one of these areas (or neither), I cover the
fundamental concepts needed to understand the work from both of these perspectives in
Part I: Theoretical Background, split into two chapters - 2: Theory of topological
insulators and 3: Theory of light. I do not assume any knowledge outside of that given
in a standard undergraduate programme. I should note that a body of work already exists
on the optical properties of bulk 3D topological insulators [15–19], but as the results of
this thesis deal with nanoscale topological insulators I will not cover those works in any

3Topological insulator quantum dots usually refer to 2D systems, although the literature is not entirely
consistent.

4There are various qualitative differences between semiconductor quantum dots and TQDs, an important
one being that semiconductor quantum dots operate in the visible range, whereas TQDs operate in the
THz. I use the acronym TQD to distinguish from 2D TIQDs.
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detail here. Instead, I direct the reader to the literature and in particular section III D
of [18], which gives an excellent summary of the topic.

InPart II: Research topics, the work is split thematically into three chapters. In 4: Topo-
logical insulator nanostructures, I extend the results for the electronic structure of
spherical TI nanoparticles (TINPs) and TI nanowires [34, 35] to include TI nanostruc-
tures of wide-ranging dimensions, allowing for the study of any nanostructure from
an infinite nanowire to a flat nanodisk within a single mathematical framework [3].
5: THz lasing with topological quantum dots covers my work on using the discrete
surface state energy levels of a TINP as a lasing system. I use a combination of analyt-
ical and numerical techniques to demonstrate that a single TINP in a cavity irradiated
with a low-intensity external source will lase from its topological surface states with an
ultra-low lasing threshold. This robust, low-threshold laser emits in the much coveted THz
regime. At room temperature, thermal THz photons are abundant enough to provide the
pumping source of the system, presenting an exciting path towards room-temperature
THz lasing with no additional external pumping source [4]. The light-mediated
transitions between TINP surface states drastically modifies its optical properties, resulting
in an extraordinarily strong resonance (the SToP mode) in its absorption cross-section [5].
In 6: Modifying light with topology I model this effect in Bi2Te3, and give the re-
sults of an experimental collaboration with the groups of Dr Cecilia Mattevi (Imperial
College London) and Dr Stefano Lupi (Sapienza University of Rome), in which the first
experimental observation of the SToP mode was made in Bi2Te3 - remarkably at
room-temperature [6]. Additionally, in this chapter I demonstrate that the SToP mode can
be used to radically modify the behaviour of light surrounding a TINP, increasing
the photonic local density of states by many orders of magnitude [7]. This phenomenon
has potential applications in nanotechnologies and also presents a new way of probing
topological properties of matter using light.

I then conclude and summarise, and speculate on some future research avenues. I also
attach extensive appendices, split into A: Useful maths, formalisms and conventions,
B: Supplementary derivations and information andC: Numerical methods. Many
of the appendices simply provide extra information for interested readers, but slightly
selfishly I have also included extended versions of derivations and definitions that did not
make the final cut of the thesis but that I wanted to keep somewhere safe for my own
reference. A diagrammatic summary of the topics and main results of this thesis can be
found in Figure 1.1.
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2. Theory of Topological Insulators

Much of modern physics is built on the concept of symmetries and the resulting conserved
quantities elegantly described by Noether’s theorem1. In condensed matter physics,
we are most familiar with the symmetries and phases of matter characterised by local
order parameters within the Landau theory of phase transitions [38, 39]. However, in
the last few decades the exploration of topological phases of matter has led to many
new developments in our understanding of condensed matter physics, culminating in a
Nobel prize for Thouless, Haldane and Kosterlitz in 2016 [40] and a Breakthrough prize in
fundamental physics for Kane and Mele in 2019 [41].

In particular, this thesis deals with 3D topological insulators (TIs). Topological insula-
tors are materials with a gapped Hamiltonian, whose topological surface states are protected
by time-reversal symmetry [42–46]. In order to fully understand the physics of these systems,
I will first explain how symmetry and order can be used to characterise material phases.
The concepts of symmetry and order are key to the description of topological insulators,
but the standard paradigm of local order is no longer sufficient to explain them and we
must instead invoke the concept of topological invariants.

I will describe how topology manifests in the band structure of a material, and why edge
states often arise in these systems. I demonstrate this specifically for time-reversal (TR)
symmetric systems [44] and thus topological insulators.

The materials of interest in this thesis are in the Bi2Se3 family, which are some of the most
theoretically well-studied [47–49] (and experimentally realised [46, 50, 51]) 3D TI materials.
Knowledge of the four-band bulk TI Hamiltonian [48, 49] specific to these materials
is crucial for the derivation of topological insulator nanostructure surface states given in
Chapter 4, which then leads on to the applications of topological insulator nanostructures
interacting with light, described in Chapters 5 and 6. The results of Chapter 6 concern
hybrid modes involving the bulk phonons of topological insulators, and so I give an
overview of the bulk phonons expected in these materials and their origin.

1Emmy Noether was a groundbreaking German mathematician who made seminal contributions to both
mathematics and physics. As a student, she was only allowed to audit classes at the University of Erlangen
as she was prohibited from fully participating due to her gender. When she began teaching, her classes were
advertised under the name of her male colleague, David Hilbert, and she was only credited with assisting in
teaching. Even when she published the theorem now known as ‘Noether’s theorem’, it was Felix Klein who
presented it to the Royal Society. In 1933 when Jewish professors were banned from working at universities
by the Nazis, she moved to America where she taught until her death in 1935 (at the tragically young age
of 53) [36]. Upon hearing of her death, Einstein wrote to the New York Times describing her as "the most
significant creative mathematical genius thus far produced since the higher education of women began." [37]
and some of her work became the basis of General Relativity.
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A growing number of reviews and books on topological insulators exist [2, 18, 52–55], so
I direct the reader to these for a more comprehensive overview of the field. Topological
insulators are only one type of topological quantum matter - topology also crops up in
various areas of condensed matter, as well as other areas of physics. In the last section of
this chapter I will attempt to contextualise topological insulators in the larger landscape of
topological quantum systems.

2.1 Symmetry and topology

"It is only slightly overstating the case to say that physics is the study of symmetry."
- P.W. Anderson2

Symmetry has a well-established role in physics and the search for symmetry has been a
driving force behind many theoretical developments [57, 58]. In this section I will cover how
the elementary concepts of symmetry and conventional (local) order are used to classify
systems in condensed matter physics, and how these ideas can be extended to global order
and topological phases of matter.

2.1.1 Symmetry and conventional order

Some symmetries are so intuitive that one might not even think to describe them in
the formal language of symmetries. As an illustrative example, if we were to measure the
time-averaged density of a liquid (such as the one illustrated in Figure 2.1a) at two points
separated by an arbitrary translation, we would expect the results to be the same. Similarly,
if we were to rotate the liquid by some arbitrary angle, we would expect the density and
other physical properties of the liquid to be invariant. In physics, the idea of symmetry
is synonymous with invariance. A symmetry entails a system being invariant under a
transformation, either infinitesimal (leading to a continuous symmetry) or finite (resulting
in a discrete symmetry).

If the liquid were to be cooled, we might expect it to undergo a phase transition to
a solid, crystal phase as illustrated in Figure 2.1a. This periodic crystal of atoms no
longer obeys continuous translational or rotational symmetries. It is now only invariant
under discrete translations and rotations. The symmetries of the crystal give us a way to
classify it.3 It is also very important to note that symmetry is not only limited to spatial

2Taken from "More is different" [56]. This article is a good read for any budding condensed matter
physicist, as it gives a nice summary of the shortcomings of reductionist science. Anderson made many
seminal contributions to condensed matter on the topics of localization, antiferromagnetism and symmetry
breaking. His work on symmetry-breaking also led to advancements in particle physics and the eventual
development of the Standard Model.

3This is usually done with the elegant method of group theory, which is not strictly needed for the work
of this thesis so I omit it here, but this method is demonstrated in Reference [49].

8



a b

ax
x

y
ay

ax

ay
u(r)

Figure 2.1: Conventional phase transitions: (a) Solid-liquid phase transition. (b)
Displacement field u(r) gives the displacement needed to bring the ideal lattice into line
with the atoms in the local neighbourhood of r. There is an ambiguity in this definition
due to freedom to choose the reference atom, such that u(r) ≡ u(r) + (2max, 2nay), where
m and n are integers.

transformations (such as translation, rotation, inversion, reflection etc), but a system can
also display symmetries with respect to time, or internal symmetries relating to its internal
degrees of freedom such as spin or charge.

We can say that the liquid phase has a higher level of symmetry than the solid phase, as
the symmetries of the solid phase are a subset of those describing the liquid phase. In
order to change between these phases (i.e. for a phase transition to occur), symmetries
may be introduced or broken.4 Every symmetry is linked to a conserved quantity. For
example, temporal invariance leads to energy conservation in a system. Translational
invariance results in the conservation of momentum. This important concept is described
by Noether’s theorem [59], and conservation laws for discrete symmetries also exist and
reduce to Noether’s theorem for infinitesimal transformations.

Complementary to the idea of symmetry, the notion of order can also be used in con-
densed matter to characterise the varying internal structures of different states of matter.
When a crystal is deformed, defective or heated to high temperatures, the atoms will be
displaced from their lattice positions to form the liquid phase. The vectors describing the
displacements, u(r), are equivalently the vectors needed to bring the atoms back to an ideal
lattice in their local neighbourhood, described by r− r′ (depicted in Figure 2.1b). As it
is ambiguous which ideal atomic position should be associated with each atom, really the
displacement vector is defined up to the addition of an integer sum of the lattice vectors,

4Phase transitions can also occur without symmetry breaking, but I will not comment on those here.
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such that in 2D, u(r) ≡ u(r) + (max, nay). A perfect crystal will be denoted by |u(r)| = 0

(such that there is no displacement from the ideal atomic positions), and |u(r)| 6= 0 denotes
a disordered system. A small deformation of the system Hamiltonian may trigger |u(r)| to
grow from zero, signalling a phase transition.5 Phases can usually be determined via local
order parameters, in which the order parameter field at a point is defined in the local
neighbourhood of that point. e.g. the displacement field for the solid-liquid transition that
we have just discussed. It should probably be noted that u(r) is a slightly messy order
parameter as it would be rather difficult to measure. An alternative order parameter would
be shear modulus (as liquids deform under shear stress, while solids do not).

2.1.2 Topological invariants

"Topology is precisely the mathematical discipline that
allows the passage from local to global."

- René Thom6

So far we have spoken about how symmetry and local order can be used to characterize
condensed matter systems. Local order parameters can be measured with local probes
of the system (equivalent to our previous description that a local order parameter at r

can be constructed only with the knowledge of the region O(r− r′) where r− r′ is small).
However, local order parameters are only one way to classify systems. As well as local order
parameters, systems may also be described by their topological properties. Topological
invariants give us another way to classify systems, where systems are categorised by
parameters which require a global measurement of the entire system rather than local
probing.

Mathematically, these invariants are usually constructed as integrals of a local property over
a closed parameter space. The classic example used to demonstrate the difference between
local and global measurements is that of the sphere versus the torus.7 Local curvature of
a surface can be measured via

K =
〈(∇2∇1 −∇1∇2) e1|e2〉

det(d(e1, e2)
, (2.1)

where e1 and e2 are unit vectors on the surface and d(e1, e2) is the metric of the surface.

5We will not worry about the distinction between first- and second-order transitions in this thesis, but
for completeness, this is a first-order phase transition and there is a discontinuity in the entropy over the
phase transition, due to the existence of latent heat. More details on the distinction can be found in [38,
39].

6Thom was a mathematician most well known for his work in topology and catastrophe theory, a subset
of singularity theory. He was awarded a Fields medal in 1958 for the development of Cobordism theory, the
study of the difference between all closed manifolds and those that are boundaries.

7This would hardly be a thesis on topological condensed matter without the obligatory reference to tori
(plural of torus) morphing into coffee cups or a similar description.
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Figure 2.2: Topological invariants: (a) A local geometry can have positive or negative
curvature with respect to a reference point. When integrated over a closed surface, M , the
Gauss-Bonnet theorem links the curvature of the surface to its genus, g, via the relation∫
M K dS = 4π(1− g). The genus of (b) a sphere is g = 0, and (c) a torus is g = 1.

For the sphere and torus,

Sphere K = 1/R2, (2.2)

Torus K =
4cos(ϑ)

(Rout +Rin)((Rout +Rin) + (Rout −Rin)cos(ϑ))
, (2.3)

where R is the radius of the sphere, and for the torus, ϑ ∈ [0, 2π] and Rin and Rout are the
inner and outer radii respectively. A good general reference on differential geometry is [60],
for the interested reader. Curvature of a surface is positive or negative depending on if it
is convex or concave with respect to a fixed point (as depicted in Figure 2.2a). For the
sphere (given in Figure 2.2b), curvature is always positive, whereas for a torus (depicted in
Figure 2.2c) the curvature is positive, zero or negative at different points on the surface.
The curvature of the surface at a point may change under continuous deformation. However,
integrating the curvature over the entire closed surface always gives the same value, as per
the Gauss-Bonnet theorem, such that∫

M
K dS = 4π(1− g), (2.4)

where g is a non-negative integer such that g ∈ Z≥. For the sphere, this integral gives 4π,
and for the torus we obtain 0. The genus, g, can be identified with the number of ‘holes’
in the surface, i.e. g = 0 for the sphere and g = 1 for the torus. The genus of a closed
surface is identified as a topological invariant of the surface, and cannot be measured by
a local probe, but can only be ascertained by integrating over the entire surface. Surfaces
with the same value of genus (such as a coffee cup and a torus, or a sphere and a disk) can
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Figure 2.3: The road to 3D topological insulators: (a) Quantum Hall system, sup-
porting protected edge states. First discovered in 1980 [61] with the explanation of the
quantised Hall conductance following shortly after in 1982 [62]. (b) The first proposals of
the Quantum spin Hall system (2D topological insulator) came in 2005 [43] and 2006 [63].
The generalisation to (c) the 3D topological insulator followed in 2007 [47] .

be smoothly deformed8 into each other, and no smooth transformation will deform a sphere
to a torus or vice versa.9

This brings us to the idea that topology is really about whether or not you can continuously
deform things into each other. We will see in the next section how this applies to condensed
matter systems, in which the space of eigenstates of a system takes the place of the closed
surface, M .

2.1.3 Topological band structures and surface states

The notion of topology in condensed matter physics was introduced by Klitzing and his
discovery of the 2D quantum Hall (QH) state [61], with Thouless et al. explaining the
quantization of the Hall conductance in 1982 [62]. A quantum Hall system is created
by passing a strong magnetic field through a 2D system of electrons at low temperature
(illustrated in Figure 2.3a). Physically this could be something like a sheet of graphene or
a thin, semiconductor film. The band structure of a conducting material would normally
have overlapping valence and conduction bands, with electrons able to move through the
material on the application of a voltage. The magnetic field causes a gap to open between
the energy bands, and the strong cyclotron orbits of the electrons in the bulk material cause
them to become localized, such that they cannot move freely. Charge builds up on the edge
of the 2D system and a transverse conductance called the Hall conductance, σxy, can be
measured. A stair-like series of quantised plateaux is seen in the Hall conductance, and we
can only change between plateaux by a large deformation of the Hamiltonian.

The space of eigenstates of a Hamiltonian holds the information on the effect of the crystal
8By smooth deformation I mean a continuous transformation in which we are not allowed to cut or

puncture the surface.
9This is reflected in g being an integer, as a sphere cannot slowly be deformed to a torus with g taking

an intermediate value between zero and one - the number of holes in the surface can intuitively only be an
integer.
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on electrons in a material [64, 65]. Their corresponding eigenvalues give the band structure.
Analogous to the Gaussian curvature described in Section 2.1.2, the Berry curvature
of the space of eigenstates can tell us a lot about the physical behaviour of a condensed
matter system. In a crystalline structure, we can exploit the periodic nature of the crystal
potential to employ Bloch’s theorem [64, 65], such that the wavefunctions can be written
in the form

Ψv,k(r) = eik·ruv,k(r), (2.5)

where v is a band index, k is a wave-vector in reciprocal space (conventionally chosen
to be in the Brillouin zone10) and uv,k(r) is a periodic function. We can then calculate
the Berry curvature in reciprocal space. Bloch’s theorem also implies that the Brillouin
zone itself is closed, and so we are able to integrate curvature and other quantities over a
closed surface, as we did with Gaussian curvature of the previous section. Integrating the
Berry curvature over all occupied eigenstates (i.e. filled bands), the resulting topological
invariant tells us something about the system (much like genus in the case of the sphere
and the torus11).

The Berry curvature can be calculated by measuring the phase picked up when moving
through the space of eigenstates. The phase measured can be split into two parts - a
dynamical phase and a geometric phase, known as the Berry phase. The Berry phase is
an incredibly important quantity in topological condensed matter, but the results conveyed
in this thesis can actually be discussed without too much knowledge of the Berry phase
or resulting Berry curvature, once the idea of topological invariants is accepted. For that
reason, I give a short discussion of the Berry phase in Appendix B.1 but otherwise leave
in-depth discussion to many excellent references [54, 55, 66–69].

The topological invariant resulting from the integration of the Berry curvature over the
occupied eigenstates of the system is a Z invariant known as the first Chern number of
the system, n. As we already know, systems with differing values of a particular topological
invariant cannot be smoothly deformed into each other, and a topological phase transition
must occur to pass from one phase to another. For the quantum Hall system, the first
Chern number directly relates to the the Hall conductivity, σxy = ne2/h, explaining the
experimentally observed plateaux.

The topological invariants of a system are encoded in the eigenstates of the system, but the
band structure can also exhibit signatures of topology. While topological phases can occur
for a plethora of different condensed matter types (explained more in Section 2.4), for the
purpose of the topics covered in this thesis we limit ourselves to single-electron models
of insulators. We assume a gapped band structure with Fermi level residing in the gap

10The 1st Brillouin zone is the Wigner-Seitz cell, a primitive cell in reciprocal space.
11In fact, the equivalency of Berry curvature and Gaussian curvature can be directly calculated by

considering a parameter space using the instantaneous eigenstates of the system as a basis [66].
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(i.e. bands are filled up to the gap, and so the occupied eigenstates of the system are simply
the valence band). We now discuss how topology manifests in the band structure of these
systems.

For a general, insulating system described by the Hamiltonian H, we may smoothly deform
our system to one described by a new Hamiltonian H′ by slowly varying the parameters of
the Hamiltonian, as illustrated in Figure 2.4a. If the band gap remains open during the
transformation (as shown in Figure 2.4a(i)), the number of states residing in the valence
band is necessarily conserved, as although these states can mix amongst themselves during
the transformation the only way for the number of states to change is to close the gap
and allow states to enter from or leave to the conduction band. Topological invariants
of the system are calculated by integrating curvature or an analogous property over the
occupied bands of the material, and so will only change value if the band gap closes during a
transformation (shown in Figure 2.4a(ii)). The band gap closing signals that a topological
phase transition may occur, as it is at this point that the topological invariant can
change value. If a topological phase transition does occur, then H and H′ exist in different
topological phases. If the gap remains open during the transformation then H and H′

remain in the same topological phase. The gap remaining open is often enforced by a
system symmetry, and so in order for a topological phase transition to occur a symmetry
breaking must occur. If the symmetry is preserved then no topological phase transition will
take place.

The Hamiltonian H describes all electrons in the material and is thus a bulk Hamiltonian
- the topological invariant described above is a bulk quantity. For an insulating material
with a non-zero topological invariant surrounded or adjoined by an insulating material of
a different topological invariant (for example vacuum, which is a trivial insulator with a
topological invariant of zero), we have a boundary on the interface of these two insulators
with differing topological invariants. The change in topological invariant at the boundary
requires the band gap to close, whilst remaining gapped in the bulks of both media. This
results in localized boundary states, which necessarily traverse the band gap. Physically,
the picture we then have is of an insulating bulk, with conducting states localized on the
boundary of the material as illustrated in Figure 2.4b. For the case of a quantum Hall
system, the bulk-boundary correspondence [70–72] tells us that the first Chern number,
n, also tells us the net number of edge states,

n = N+ −N−, (2.6)

where N+ is the number of edge states going from the valence band to the conduction
band (with increasing k = |k|) and N− counts the number of edge states travelling from
the conduction band to the valence band.

It is important to emphasise that looking at the energy spectrum is not enough to characterise
the topological state of a system. Information on topology is encoded in the eigenstates.
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However, band structure and the existence of states traversing the band structure of an
otherwise gapped system does give a signature of topology.

2.2 Time-reversal symmetry and topological insulators

Whereas quantum Hall states explicitly break time-reversal (TR) symmetry, new
topologically non-trivial materials obeying TR symmetry have been discovered. The first
proposals of the 2D topological insulator (TI) - otherwise know as the quantum spin
Hall state (depicted in Figure 2.3b) - were remarkably recent (Kane and Mele, 2005 [43],
Bernevig and Zhang, 2006 [63]), and the 3D generalisation came soon after in 2007 [47]
(depicted in Figure 2.3c). Experiments have shown that these new phases of matter are
both realisable and accessible [46, 50, 51].

Topological insulators owe their non-trivial topology to strong spin-orbit coupling,12

which causes the bottom of the conduction band and top of the valence band to be pushed
towards each other and overlap, with a gap at the band crossing. This process and resulting
band inversion is depicted in Figure 2.4c. The band gap is protected by time-reversal
symmetry, and will only close if a TR-breaking perturbation such as an external magnetic
field is introduced. As explained in the previous section, we expect surface states to traverse
the gap. The surface states of topological insulators manifest as aDirac cone, that is to say
a linear dispersion relation. The surface states thus describe relativistic13, massless fermions.
These surface states are protected by time-reversal symmetry and so are robust against
both disorder and non-TR breaking perturbations. These states experience spin-momentum
locking, such that the surface state is spin non-degenerate and the direction of the spin is
perpendicular to the momentum vector and is primarily confined in the surface plane. This
results in a dissipationless spin current existing on the surface in equilibrium, as there is no
net charge flow but the spin angular momentum flows in the direction perpendicular to the
spin direction.

As the band gap is protected by time-reversal symmetry, the conducting edge states are only
present when TR symmetry is preserved, such that the fermionic time-reversal operator Tf

commutes with the system Hamiltonian [H, Tf ] = 0, and the fermion condition, T 2
f = −1, is

obeyed. The TR symmetry enforces Kramers degeneracy, that is to say that for every
eigenstate |Ψi〉, its time-reversed partner Tf |Ψi〉 is also an eigenstate and has the same
energy, but is orthogonal. These are known as Kramers pairs. This can be demonstrated

12This is the interaction of an electron’s spin with its motion inside the potential of the nuclei, and can
be thought of as an effective magnetic field seen by the spin of the electron in the rest frame.

13Relativistic in the sense that they are described by the relativistic Dirac equation, with the Fermi
velocity taking the role of the effective speed of light.
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using the anti-unitary nature of Tf and the fermion condition, such that14

〈Ψi, TfΨi〉 = 〈TfΨi, T 2
f Ψi〉∗ = −〈TfΨi,Ψi〉∗ = −〈Ψi, TfΨi〉, (2.7)

and so 〈Ψi, TfΨi〉 = 0. Consequently, in the presence of time-reversal symmetry
these counter-propagating states cannot backscatter into one another. If a TR
breaking perturbation is applied (such as a magnetic impurity in a topological insulator),
a gap will open within the dispersion relation of the edge states and they will no longer
conduct, reducing the TI to a trivial insulator. However if a non-TR breaking perturbation
is applied the states will remain gapless and will be robust against the perturbation.

The Chern number from Section 2.1.3, n, does not survive in a time-reversal invariant
system. The new system has a new topological invariant which is not an integer, but rather
a Chern parity - it can be either odd or even. It is called a Z2 invariant15. Essentially,
this Z2 invariant counts the number of Kramers pairs of edge modes, integrating over half of
the Brillouin zone. If the overall Z2 sum of occupied bands is even, the system is a regular
insulator; if the sum is odd, it is a topological insulator. For example, the 2D system
graphene possesses two Kramers pairs, has an even Z2 and is thus a ‘trivial’ system, whereas
a material with one or three Kramers pairs would be a topological system. A nontrivial
value for this quantity implies the existence of an odd number of gapless Dirac fermion
boundary states as well as a non-zero magnetoelectric polarization in three dimensions [18].

2.3 3D topological insulator (TI) materials

The first 3D TI material to be experimentally identified was Bi1−xSbx [42], predicted
by Fu and Kane [47]. It turned out to be poorly suited to detailed topological surface
state studies due to a complicated surface state structure - Rashba-split16 surface states are
present alongside the topological surface states and predicted surface state structure has not
agreed well with experimental results. Instead, we focus on the Bi2Se3 family of materials
(in particular Bi2Te3), predicted by Zhang in 2009 [48], whose model Hamiltonian for this
family of materials is used ubiquitously in theoretical studies alongside modifications by Liu
et al [49]. Much work was done on these materials before their identification as potential
topological insulators, in part because of their excellent thermoelectric properties [73, 74].
We describe the crystal structure and symmetries of this material family, and follow the
derivation in [49] to write down the four-band Hamiltonian and the following effective
surface state Hamiltonian for topological insulators.

14Using the definition of an anti-unitary matrix Θ, such that 〈a, b〉 = 〈Θa,Θb〉∗ and the fermion condition
T 2
f = −1.
15This simply means the integers, Z, modulo 2.
16A momentum-dependent splitting of spin bands in bulk crystals, a combined effect of spin–orbit

interaction and asymmetry of the crystal potential.
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Figure 4 | Surface states. a–d, Energy and momentum dependence of the LDOS for Sb2Se3 (a), Sb2Te3 (b), Bi2Se3 (c) and Bi2Te3 (d) on the [111] surface.
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states can be clearly seen around the 0 point as red lines dispersing in the bulk gap for Sb2Te3, Bi2Se3 and Bi2Te3. No surface state exists for Sb2Se3.

be carried out on the other three materials, from which we see that
Sb2Te3 and Bi2Te3 are qualitatively the same as Bi2Se3, whereas the
SOCof Sb2Te3 is not strong enough to induce such an inversion.

Topological surface states
The existence of topological surface states is one of the most
important properties of the topological insulators. To see the
topological features of the four systems explicitly, we calculate the
surface states of these four systems on the basis of an ab initio
calculation. First we construct the maximally localized Wannier
function (MLWF) from the ab initio calculation using the method
developed by Marzari and co-workers21,22. We divide the semi-
infinite system into a surface slab with finite thickness and the
remaining part as the bulk. The MLWF hopping parameters for the
bulk part can be constructed from the bulk ab initio calculation, and
the ones for the surface slab can be constructed from the ab initio
calculation of the slab, in which the surface correction to the lattice
constants and band structure have been considered self-consistently
and the chemical potential is determined by the charge neutrality
condition.With these bulk and surfaceMLWFhopping parameters,
we use an iterative method23,24 to obtain the surface Green’s
function of the semi-infinite system. The imaginary part of the
surface Green’s function is the local density of states (LDOS), from
which we can obtain the dispersion of the surface states. The surface
LDOSon the [111] surface for all four systems is shown in Fig. 4. For
Sb2Te3, Bi2Se3 andBi2Te3, one can clearly see the topological surface
states that form a single Dirac cone at the 0 point. In comparison,
Sb2Se3 has no surface state and is a topologically trivial insulator.
Thus, the surface-state calculation agrees well with the bulk parity
analysis, and confirms conclusively the topologically non-trivial
nature of the three materials. For Bi2Se3, the Fermi velocity of the
topological surface states is vF ' 5.0⇥105 m s�1, which is similar to
that of the other two materials.

Low-energy effective model
As the topological nature is determined by the physics near the 0
point, it is possible to write down a simple effective Hamiltonian

to characterize the low-energy long-wavelength properties of
the system. Starting from the four low-lying states |P1+

z ," (#)i
and |P2�

z ," (#)i at the 0 point, such a Hamiltonian can be
constructed by the theory of invariants25 for the finite wave
vector k. On the basis of the symmetries of the system, the
generic form of the 4⇥ 4 effective Hamiltonian can be written
down up to the order of O(k2), and the tunable parameters in
the Hamiltonian can be obtained by fitting the band structure
of our ab initio calculation. The important symmetries of the
system are time-reversal symmetry T , inversion symmetry I and
three-fold rotation symmetry C3 along the z axis. In the basis of
(|P1+

z ,"i, |P2�
z ,"i, |P1+

z ,#i, |P2�
z ,#i), the representation of the

symmetry operations is given by T = K · i� y ⌦ I2⇥2, I = I2⇥2 ⌦ ⌧3
andC3 = exp(i(⇡/3)� z ⌦I2⇥2), whereK is the complex conjugation
operator, � x,y,z and ⌧ x,y,z denote the Pauli matrices in the spin and
orbital space, respectively. By requiring these three symmetries and
keeping only the terms up to quadratic order in k, we obtain the
following generic form of the effective Hamiltonian:

H (k) = ✏0(k)I4⇥4 +

0

B@

M(k) A1kz 0 A2k�
A1kz �M(k) A2k� 0
0 A2k+ M(k) �A1kz

A2k+ 0 �A1kz �M(k)

1

CA

+ o(k2) (1)

with k± = kx ± iky , ✏0(k)= C +D1k2z +D2k2? and M(k)=M �B1
k2z � B2k2?. By fitting the energy spectrum of the effective
Hamiltonian with that of the ab initio calculation, the parameters
in the effective model can be determined. For Bi2Se3, our fitting
leads to M = 0.28 eV, A1 = 2.2 eVÅ, A2 = 4.1 eVÅ, B1 = 10 eVÅ2,
B2 = 56.6 eVÅ2, C = �0.0068 eV, D1 = 1.3 eVÅ2, D2 = 19.6 eVÅ2.
Except for the identity term ✏0(k), the Hamiltonian (1) is
nothing but the 3D Dirac model with uniaxial anisotropy along
the z-direction and k-dependent mass terms. From the fact
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be carried out on the other three materials, from which we see that
Sb2Te3 and Bi2Te3 are qualitatively the same as Bi2Se3, whereas the
SOCof Sb2Te3 is not strong enough to induce such an inversion.

Topological surface states
The existence of topological surface states is one of the most
important properties of the topological insulators. To see the
topological features of the four systems explicitly, we calculate the
surface states of these four systems on the basis of an ab initio
calculation. First we construct the maximally localized Wannier
function (MLWF) from the ab initio calculation using the method
developed by Marzari and co-workers21,22. We divide the semi-
infinite system into a surface slab with finite thickness and the
remaining part as the bulk. The MLWF hopping parameters for the
bulk part can be constructed from the bulk ab initio calculation, and
the ones for the surface slab can be constructed from the ab initio
calculation of the slab, in which the surface correction to the lattice
constants and band structure have been considered self-consistently
and the chemical potential is determined by the charge neutrality
condition.With these bulk and surfaceMLWFhopping parameters,
we use an iterative method23,24 to obtain the surface Green’s
function of the semi-infinite system. The imaginary part of the
surface Green’s function is the local density of states (LDOS), from
which we can obtain the dispersion of the surface states. The surface
LDOSon the [111] surface for all four systems is shown in Fig. 4. For
Sb2Te3, Bi2Se3 andBi2Te3, one can clearly see the topological surface
states that form a single Dirac cone at the 0 point. In comparison,
Sb2Se3 has no surface state and is a topologically trivial insulator.
Thus, the surface-state calculation agrees well with the bulk parity
analysis, and confirms conclusively the topologically non-trivial
nature of the three materials. For Bi2Se3, the Fermi velocity of the
topological surface states is vF ' 5.0⇥105 m s�1, which is similar to
that of the other two materials.

Low-energy effective model
As the topological nature is determined by the physics near the 0
point, it is possible to write down a simple effective Hamiltonian

to characterize the low-energy long-wavelength properties of
the system. Starting from the four low-lying states |P1+

z ," (#)i
and |P2�

z ," (#)i at the 0 point, such a Hamiltonian can be
constructed by the theory of invariants25 for the finite wave
vector k. On the basis of the symmetries of the system, the
generic form of the 4⇥ 4 effective Hamiltonian can be written
down up to the order of O(k2), and the tunable parameters in
the Hamiltonian can be obtained by fitting the band structure
of our ab initio calculation. The important symmetries of the
system are time-reversal symmetry T , inversion symmetry I and
three-fold rotation symmetry C3 along the z axis. In the basis of
(|P1+

z ,"i, |P2�
z ,"i, |P1+

z ,#i, |P2�
z ,#i), the representation of the

symmetry operations is given by T = K · i� y ⌦ I2⇥2, I = I2⇥2 ⌦ ⌧3
andC3 = exp(i(⇡/3)� z ⌦I2⇥2), whereK is the complex conjugation
operator, � x,y,z and ⌧ x,y,z denote the Pauli matrices in the spin and
orbital space, respectively. By requiring these three symmetries and
keeping only the terms up to quadratic order in k, we obtain the
following generic form of the effective Hamiltonian:

H (k) = ✏0(k)I4⇥4 +
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with k± = kx ± iky , ✏0(k)= C +D1k2z +D2k2? and M(k)=M �B1
k2z � B2k2?. By fitting the energy spectrum of the effective
Hamiltonian with that of the ab initio calculation, the parameters
in the effective model can be determined. For Bi2Se3, our fitting
leads to M = 0.28 eV, A1 = 2.2 eVÅ, A2 = 4.1 eVÅ, B1 = 10 eVÅ2,
B2 = 56.6 eVÅ2, C = �0.0068 eV, D1 = 1.3 eVÅ2, D2 = 19.6 eVÅ2.
Except for the identity term ✏0(k), the Hamiltonian (1) is
nothing but the 3D Dirac model with uniaxial anisotropy along
the z-direction and k-dependent mass terms. From the fact
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Figure 2.5: Crystal structure and band structure of topological insulator mate-
rials: (a) Spatial view and (0001) projection of a Bi2Te3 unit cell with repetition of a Te II
layer. The unit cell consists of three quintuple layers (QLs), which are bonded by weak van
der Waals forces. A QL consists of five strongly bound alternating hexagonal Bi (purple)
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Warmer colours represent higher LDOS. The surface states can be clearly seen around the
Γ point as red lines traversing the bulk gap. Figure (a) created by S. Palmer. Figures
(b i) and (b ii) taken from [48], reprinted with permission from Springer Nature, Nature
Physics.
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2.3.1 Crystal structure and symmetry

Bi2Te3 (and other materials in the same family, such as Bi2Se3) consists of five-atom layers
stacked along the z direction (shown in Figure 2.5a), and bonded by mixed ionic-covalent
bonding. The coupling between two atomic layers within a quintuple layer (QL) is
strong, whilst that between QLs is predominantly due to van der Waals forces and is
thus much weaker. A unit cell consists of three QLs, and has a height of 3.051 nm, with
each QL thus approximately 1 nm thick. Lattice symmetries of the material are comprised
of a three-fold rotation symmetry along the z-direction, an additional two-fold rotation
symmetry along the x-direction and an inversion symmetry with Te II (Se II) as the
centre of inversion. The material also obeys time-reversal symmetry, as we would expect
for topological insulators (as per Section 2.2).

To understand the band structure of these materials, we use Bi2Te3 as our example, and
starting with the isolated atomic orbitals we study all of the relevant interactions until we
get to the final band structure, following the scheme in [49] and given diagrammatically
in Figure 2.6. Starting with the atomic orbitals of Bi and Te, we note that the electronic
configurations of these elements are 6s26p3 for Bi and 5s25p4 for Te.17

As the outermost shells for both elements are p-orbitals, it is sensible to neglect all other
orbitals and only consider the p-orbitals. Within one QL, there are five atoms in each unit
cell, each of which have 3 p-orbitals, px, py and pz, so overall there are 15 orbitals. We label
these orbitals |Λ, α〉 where Λ = Bi, Bi′, Te I, Te I′, Te II, and α = x, y, z, as illustrated in
Figure 2.5a. As the Bi and Te atoms occur in alternate layers of the QL (with weak Van
der Waals forces inbetween QLs), the strongest interaction is the coupling between Bi and
Te layers.

This type of coupling causes level repulsion, such that the Bi levels are pushed up and
form the new, hybridised states |Bα〉 and |B′α〉, and the Te levels are pushed down and
form the new, hybridised states |Tα〉, |T ′α〉 and |T0α〉 demonstrated in Figure 2.6 (I).

As our system has inversion symmetry, it is convenient to rewrite these orbitals as
bonding and anti-bonding states with definite parity,18 such that

|P1±, α〉 =
1√
2

(
|Bα〉 ∓ |B′α〉

)
, (2.8)

|P2±, α〉 =
1√
2

(
|Tα〉 ∓ |T ′α〉

)
. (2.9)

The upper index gives the parity of each state. When the energies of each level are calculated,
we find that P1+

α and P2−α are closest to the Fermi level, as shown in Figure 2.6 (II). We
focus on these levels and neglect the others. We now note that due to the anisotropy

17The same approach can be taken for Bi2Se3, noting that the electronic configuration of Se is 4s24p4.
18States can be reduced to linear combinations of states which are definitively even or odd under a parity

(inversion) transformation.
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Figure 2.6: The origin of the Bi2Te3 band structure: Starting from the atomic orbitals
of Bi and Te, the following four steps are required to understand the band structure: (I)
The hybridization of Bi orbitals and Te orbitals, (II) the formation of the bonding and
anti-bonding states due to the inversion symmetry, (III) the crystal field splitting, and (IV)
the influence of the SOC. Figure reproduced from [49] with permission from the American
Physical Society. This scheme also describes the band structure for other materials in the
Bi2Se3 family.

of the crystal (i.e. that the x and y directions are different to the z direction due to the
layered structure of the material), there is an energy splitting between the px,y orbitals
and the pz orbitals for both states. The P1+

x,y states have a higher energy than P1+
z , and

the P2−x,y states have a lower energy than P2−z . This means that the conduction band is
primarily dominated by P1+

z , and the valence band is predominantly P2−z , as demonstrated
in Figure 2.6 (III).

So far we have neglected spin, which we now include. The states |P1+, α, σ〉 and |P2−, α, σ〉
are doubly degenerate, where we have added the extra index σ = ±1/2 to denote spin. It
is convenient to transform the states such that

|Λ, p±, σ〉 = ∓ 1√
2

(|Λ, px, σ〉 ± i|Λ, py, σ〉) , (2.10)

where Λ = P1+, P2−. The spin-orbit interaction couples |Λ, pz, ↑〉 to |Λ, p+, ↓〉 and
|Λ, pz, ↓〉 to |Λ, p−, ↑〉, inducing level repulsion. Consequently |P1+

−,±1/2〉 is pushed down
and |P2−+,±1/2〉 is pushed up and the levels cross, as shown in Figure 2.6 (IV). As these
two pairs of states have opposite parity, their swapping leads to band inversion, and gives
the topological signature of these materials. As these four bands are the closest to the Fermi
level, when considering the bulk Hamiltonian, it is sufficient to neglect the other bands and
use a four-band Hamiltonian, with the other bands giving corrective perturbations [49].
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2.3.2 Four-band bulk Hamiltonian for TIs

The Hamiltonian can be derived by symmetry principles and considering the symmetries of
the crystal structure given in Section 2.3.1, or by using k · p theory. I briefly cover the
k · p method here and refer interested readers to [49] for the symmetry derivation. k · p
theory is an approximated, semi-empirical approach used for calculating band structures.
The important topological physics in this material occurs near the Γ point19, and so the
wave function at the Γ point is used as the zeroth order wave function, and

Hk·p =
~
m0

k · p, (2.11)

is treated as a perturbation, where p = −i~∂r is the momentum operator acting on the
zeroth-order wave function and the crystal momentum is regarded as a small parameter
for the perturbation procedure. Then, the Hamiltonian can be expanded in powers of k
allowing us to write down a low-energy, effective Hamiltonian [49]. As described in
the previous section, we only consider the four bands nearest the Fermi level and so we
project the Hamiltonian onto the four bands |P1+

−,±1/2〉 and |P2−+,±1/2〉. The obtained
model Hamiltonian will depend on a series of matrix elements of momentum 〈Λ1, α|p|Λ2, β〉,
which can be simplified by considering the symmetries of the crystal. The wave function
at the Γ point can be obtained through ab initio calculations, and consequently all of
these matrix elements can be calculated. The in-depth calculation can be found in [49].
Following this scheme, the final four band Hamiltonian is given by

H(k) = ε0(k)I4 +


m(k) B0kz 0 A0k−

B0kz −m(k) A0k− 0

0 A0k+ m(k) −B0kz

A0k+ 0 −B0kz −m(k)

 , (2.12)

where k± = kx±iky, m(k) = m0 +m1k
2
z +m2(k2

x+k2
y) and ε0(k) = C0 +C1k

2
z +C2(k2

x+k2
y).

All constants have numerical values O(1) in A.U., extracted from density functional
theory (DFT) calculations (given in Table 2.1). For all following calculations, we set
m1 = m2, (which gives a symmetric parabolic dispersion in all three dimensions
without sacrificing accuracy, as we will later find that terms involving m1 are negligible
anyway), A0 = B0 (i.e. assuming isotropy in spin-orbit coupling strength in all three
directions to make the problem more tractable - we will take an average A = (2A0 +B0))/3

to find an effective value), ε(k) = 0 (restoring particle-hole symmetry without sacrificing

19The Γ point is simply the formal name for the high-symmetry point of a dispersion relation for which
k = 0. After we have demonstrated that the surface state dispersion relation takes the form of a Dirac
cone, the Γ point from then on will be referred to as the Dirac point.
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A0 B0 A C0 C1 C2 m0 m1 m2

(eV Å) (eV Å) (eV Å) (eV) (eV Å2) (eV Å2) (eV) (eV Å2) (eV Å2)
Bi2Se3 3.33 2.26 3.0 -0.0083 5.74 30.4 -0.28 6.86 44.5
Bi2Te3 2.87 0.30 2.0 -0.18 6.55 49.68 -0.3 57.38 45.02

Table 2.1: Four-band Hamiltonian parameters: The parameters (taken from [49],
originally extracted from DFT calculations) for the Hamiltonian describing the four bands
nearest the Γ point of Bi2Se3 and Bi2Te3.

too much accuracy, particularly when close to the Γ point), giving the simplified Hamiltonian

H(k) =


m(k) Akz 0 Ak−

Akz −m(k) Ak− 0

0 Ak+ m(k) −Akz
Ak+ 0 −Akz −m(k)

 . (2.13)

This Hamiltonian can be rewritten20 in terms of the Pauli matrices (given in Ap-
pendix A.1),

H(k) = m(k)12 ⊗ σ3 +Akzσ3 ⊗ σ1 +Akxσ1 ⊗ σ1 +Akyσ2 ⊗ σ1. (2.14)

This form will be particularly useful in Chapter 4 when dealing with other coordinate
systems in which the Hamiltonian is more cumbersome.

2.3.3 Effective surface state Hamiltonian

We can now consider the physics at the surface of a TI material, still following the
method in Reference [49]. For mathematical ease, let us consider that the surface is the
plane z = 0, such that surface states are localised near the surface in the z direction. Close
to the Γ point, linear terms will dominate and so all quadratic terms can be neglected21.
We can split the bulk Hamiltonian in Equation 2.14 into parts parallel and perpendicular to
the surface, such that H = H‖ + H⊥ (and including constant terms in H⊥). Perpendicular
to the surface, we have that

H⊥ = m012 ⊗ σ3 +Akzσ3 ⊗ σ1. (2.15)

We can replace kz → −i∂z and obtain the eigenvalue problem

[m012 ⊗ σ3 − iAσ3 ⊗ σ1∂z] Ψ = EΨ. (2.16)

20The tensor product, ⊗, is defined in Appendix A.2.
21We will see in Chapter 5 that this is not always the case.
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Due to the block diagonal form of the Hamiltonian, the eigenstates will have the form

Ψ↑(z) =

(
Ψ0

0

)
, Ψ↓(z) =

(
0

Ψ0

)
, (2.17)

where 0 is the two-component zero vector. Ψ↓(z) and Ψ↑(z) are related by the time-reversal
operator. Ψ must then satisfy the eigenvalue equation given by H‖, where

H‖ = Akxσ1 ⊗ σ1 +Akyσ2 ⊗ σ1. (2.18)

Equivalently, this means that Ψ0 obeys the effective surface Hamiltonian

Hsurf(kx, ky) = A (σ1kx + σ2ky) + const. (2.19)

This is a Dirac Hamiltonian giving a linear, relativistic dispersion relation and tells us
that the surface states are described by massless Dirac fermions. By diagonalising, we find
the dispersion relation

E = ±A|k|, (2.20)

where |k| =
√
k2
x + k2

y. The surface states can also be directly extracted from ab initio
calculations by constructing maximally localized Wannier functions and calculating the
local density of states (LDOS) on an open boundary. The band structures of Bi2Se3 and
Bi2Te3 are given in Figures 2.5b i and 2.5b ii respectively, showing a bulk band gap and
surface states traversing the gap in the form of a single Dirac cone22. With a relatively
large band gap (0.3 eV [76]) and simple surface spectrum, Bi2Se3 is a good material with
which to study topological surface phenomena and was the focus of the original work on
topological insulator nanoparticles [5], but due to preexisting experimental abilities to
produce Bi2Te3 nanoparticles, my work in Chapters 5 and 6 utilise Bi2Te3 (which has
a band gap of 0.17 eV [77]). It should be noted that the placement of the Dirac cone
relative to the conduction and valence bands will depend on the surface termination23

of the system. For Bi2Te3 this subtlety is particularly important, as if the conventional
termination of a complete quintuple layer is used (such that the surface is made entirely
of Te atoms) then the Dirac point will touch the valence band. It is necessary to use a
non-conventional termination of part of a quintuple layer in order to achieve a Dirac cone in
the middle of the band gap [77]. Experimental confirmation of a single Dirac-cone surface
state for Bi2Te3 was reported in 2009 [45].

22Note that true 2D systems with TR symmetry will have an even number of Dirac cones (e.g. Graphene,
which has six Dirac cones [75]). 2D surface systems allow for a single Dirac cone, with the system described
as a ‘holographic metal’. This links back nicely to our discussion of Kramers pairs in Section 2.2.

23Surface termination refers to the configuration of atoms at the surface of a finite sample of material.
In the case of a flat sample of Bi2Te3, with a surface perpendicular to the z-axis, there are five possible
terminations - one conventional termination resulting from a surface at the van-der-Waals gap of the
material, and four non-conventional, fractional quintuple layer terminations.
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Figure 2.7: Optical phonons in Bi2Te3: (a) Chain of five atoms in a quintuple layer
used to demonstrate vibration dynamics highlighted with black outline and black lines
indicating their covalent bonds. (b) The (i) Raman active and (ii) IR active modes of
Bi2Te3, with subscripts g and u referring to Raman and IR active modes respectively. The
superscripts 1, 2 denote the low and high frequency modes respectively, while E and A
refer to whether the modes are in-plane or out-of-plane. The ± signs denote in-plane and
out-of-plane movement. Figure modified from [78] with permission from John Wiley and
Sons, Physica status solidi (b).
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2.3.4 Bulk phonons in topological insulator materials

So far we have discussed the ground state properties of the topological insulator Hamiltonian.
For the work of this thesis (in particular Chapter 6), we will also need to understand a
little about the excitations of these materials. The idea of phonons - i.e. the collective
excitations which propagate through crystal lattices when they are perturbed - should be a
familiar concept from any undergraduate course in solid state physics. In keeping with the
discussion of symmetry in this chapter, Reference [79] provides an interesting discussion on
how vibrational modes in lattices can be predicted by spontaneous breaking of the lattice
symmetry. Both acoustic and optical24 phonons can be described in this way.

By inspecting the lattice structure of our system, the type of bulk phonons can be predicted.
We use Bi2Te3 as our example, but these results will be the same for Bi2Se3 and Sb2Te3.
The c-axis25 [0001], is aligned with the z-axis, and labelled in Figure 2.5a. The normal
modes of vibration propagating along the c-axis of the material involve motion of the entire
planes of atoms, either parallel or perpendicular to the c-axis and so directly depend on the
inter-planar forces. There are 15 lattice vibration modes - 12 optical and three acoustic, of
which we focus on the optical modes. The 12 optical branches have 2A1g, 2Eg, 2A1u and
2Eu symmetry [78], where E and A indicate the in-plane and out-of-plane lattice vibrations.
The g and u subscripts denote Raman active (see Figure 2.7bi) and IR active26 modes
(Figure 2.7bii) respectively. The optical modes belonging to A1u and Eu can also be Raman
active. I give more information on Raman and IR spectroscopy in Appendix B.2, and more
details of the spectroscopic probing of Bi2Te3 in particular can be found in references [78,
80–82].

2.4 Landscape of topological quantum systems

This section is not necessary to understand the work of this thesis, however I include it to
place topological insulators into the context of the much larger landscape of topological
quantum systems, depicted in the (non-exhaustive) diagram presented in Figure 2.8.
The concept of topology has made a profound impact on modern condensed matter physics,
and as many topics fall under its general framework, the myriad of definitions, quantities
and systems demonstrating topological features can be overwhelming.

We start with the idea of quantum phases of matter, which are generally understood
24Acoustic phonons are coherent movements of the material atoms away from their equilibrium positions,

comparable to the compression and expansion of air due to a sound wave, hence their name. Optical
phonons are out of phase excitations in which atoms within the lattice basis move in different directions.
Fluctuations like this typically create an electric polarisation in the material allowing coupling to the
electromagnetic field, hence the name of optical phonons.

25The c-axis (optical axis) of a material is a direction in which a ray of incoming light suffers no double
refraction. A material such as Bi2Te3 has a single c-axis, and so is known as uniaxial.

26Raman spectroscopy probes matter using the weak, inelastic Raman scattering process whereas IR
spectroscopy relies on the absorption of light by the material.
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to be phases of matter at zero temperature. Quantum phases correspond to the ground
states of the quantum Hamiltonians which govern these systems. The topological insulator
Hamiltonians we have been discussing are exactly of this Hamiltonian type. As I have
mentioned in earlier sections, it was once assumed that all possible quantum phases of
matter and all possible (continuous) quantum phase transitions could be described by
Landau’s theory of symmetry breaking. However, the discovery of chiral spin states [83–
85] cast doubt on this idea, as many demonstrably different chiral spin states were found,
all obeying the same symmetries. Symmetry alone was thus not enough to characterize
and distinguish different chiral spin states, and it was surmised that these systems must
contain a new kind of order that is beyond the usual symmetry description.

The new type of order proposed was topological order [86]27. The non-Abelian geometric
phase of degenerate ground states [86, 88], was introduced to both define and characterize
the different topological orders in chiral spin states. It was observed that the similarity [89]
between chiral spin states and fractional quantum Hall (FQH) states [90, 91] also allowed
one to use the theory of topological order to describe different FQH states. Just like chiral
spin states, differing FQH states may have the same symmetry and cannot be distinguished
by symmetry breaking, despite having distinguishable physical properties. It was concluded
that FQH states must have a new type of order, and it was found that the new order in
quantum Hall states can be described by topological order [92]. This discovery confirmed
that topological order can be experimentally realised. However, FQH states were not
the first experimentally discovered states with topological order - superconductors with
topological order had previously been discovered, but their topological order unappreciated
until much later [93].

We have already discussed in some detail how topological systems can be defined by their
topological invariants, which can be measured by following the dynamical phase of a closed
path in reciprocal space. States with non-local order parameters can be called topologically
ordered - more generally, however, the definition of a topological phase is a phase of matter
whose low-energy field theory is a topological field theory. More details on this type
of classification are given in [55, 94–96]. Microscopically, the notion of topological order
is a measure of entanglement patterns. Systems with short range entanglement (SRE)
can all be transformed into each other via local unitary transformations, and so they
all belong to the same trivial phase. Systems with long range entanglement (LRE),
however, cannot be transformed into each other (or into systems with SRE) via local unitary
transformations, and so LRE states can belong to many different phases. These phases can
be defined as different topological orders.

Topological ordered systems have new characteristic properties with important ramifications.
Topologically ordered systems exhibit new collective excitations which can be experimen-

27Naming motivated by the low-energy effective field theory of the chiral spin states, a topological
quantum field theory [83, 87].
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tally measured, for example in neutron scattering experiments. The quasiparticles28 of
topologically ordered systems can carry fractional statistics [97, 98] (including non-Abelian
statistics [99]) and fractional charges if there is a symmetry [91]. This property could
allow for the systems to be used for topological quantum memory and topological
quantum computation [100] (for example in surface codes [101] - it was proposed that
the topologically protected degeneracy of the Z2 spin liquid could be used to perform
fault-tolerant quantum computation as a Toric code.). Some topological orders have
topologically protected gapless boundary excitations [102, 103], which lead to perfectly
conducting boundary channels - this has the potential for revolutionary device applications.

Although the concept of topologically ordered phases has been around for some time
now, most examples have involved complicated states of matter, such as the FQH [90,
91], quantum double models [100], doubled Chern-Simons [104] theories, amongst others.
The topologically ordered states that have been experimentally realized and theoretically
investigated until now have all involved strong electron-electron interactions.

Free fermion states of matter have been assumed to be topologically trivial in the past, in
part due to the exactly solvable nature of their Hamiltonian spectra. However, a subset
of these systems do have properties indicating topological behaviour, such as gapless edge
states - even though they are formed from non-interacting fermions. The epitomic system
is that of the integer quantum Hall (IQH) effect, as described in Section 2.1.3. IQH is
an example of topological order, and specifically invertible topological order29. This
system cannot be smoothly deformed into a product state30 without a phase transition
occurring [105]. By another definition, this system is not necessarily classified as topological
- Kitaev says that only states with non-trivial topological excitations can be called long
range entangled [106], and so IQH is SRE under this definition.

Our discussion so far has glaringly omitted discussion of topological insulators, the systems
of focus in this thesis. As we already know, topological insulators are formed from non-
interacting fermions, much like the IQH state. We also know this system exhibits properties
indicative of topology, such as gapless edge states. However, topological insulators exhibit
short range entanglement, and thus do not exhibit topological order. It has been found that if
a system must preserve a symmetry, Ω, then not all SRE states can be deformed to a product
state while respecting Ω. This means that SRE states can have non-trivial topological phases
which are protected by the symmetry Ω. These are symmetry protected topological

28Although the exact definition is not universally agreed upon, a quasiparticle is an elementary excitation
of a collection of particles. Some physicists reserve the term quasiparticles for fermionic excitations, while
bosonic excitations such as phonons are described as collective excitations. I am in the camp of physicists
content to describe both fermionic and bosonic excitations as quasiparticles, but the point is not of any
importance for this thesis.

29Invertible topological order means that another system with topological order exists such that stacking
the two states will result in a gapped state with no topological order. Systems with invertible topological
order do not host fractional excitations.

30A product state is a state which can be decomposed into the form |Ψ〉 = ⊗|ψ〉, where ⊗ is the tensor
product described in Appendix A.2.
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states (SPT) [107, 108]. Topological insulators are a small subset of SPT states. Unlike
systems with LRE and thus intrinsic topological order, SPT states are only protected as long
as the symmetry is not broken. These systems typically have interesting boundary physics,
such as gapless modes or gapped topological order on the boundary. Characterizing them
usually requires global quantities too and cannot be done by local order parameters. This
is exactly what we have seen for topological insulators in Section 2.2, in which topological
insulator systems obey time-reversal symmetry, and the state is characterised by a Z2

topological invariant.

A periodic table classifying topological insulators and superconductors has been cre-
ated [109]. The table organizes the possible topological states according to their space-time
dimension and the symmetries that must remain protected: TR, charge-conjugation, and/or
chiral symmetries. The relevant entries in this table within the context of this thesis are the
2D and 3D TR-invariant topological insulators. In this definition, quantum Hall states
and the SSH model [110–112] are classified as topological insulators, as the definition relies
on whether bulk-boundary correspondence is obeyed or not. The current classification
of topological insulators covers only TR, charge-conjugation, or chiral symmetries and does
not exhaust the number of all possible topological insulators. In principle, for every discrete
symmetry, there must exist topological insulating phases with distinct physical properties
and a topological number that classifies these phases and distinguishes them from the trivial
ones.

The explosion of interest in topological insulators (whilst far from being over) has also led
to the rapid acceleration in the search for other topological phases, leading to topological
crystalline insulators (in which crystal symmetries lead to SPT phases) [113, 114],
topological semi-metals [115, 116], topological superconductors [18, 54, 114, 117,
118] and many more. The study of topological insulators themselves as a more mature
topic now lends itself to a great many potential applications, such as topological quantum
computing, quantum information, spintronics, topological lasing and plasmonics [46, 119–
125]. Composite systems involving topological insulators, such as topological insulators
interacting with superconductors [125–127], topological insulator materials interfaced with
magnetic systems to produce magnetic TIs [128, 129] and so on are also exciting avenues
of study.

Another area that has benefited from development is that of bosonic analogues of topological
phases. For example, topological magnon insulators [130, 131] and photonic topo-
logical insulators [1, 12, 13, 132] in which bosons (magnons and photons respectively)
experience an enforced pseudo time-reversal symmetry, and replicate many of the benefits
of electronic topological insulators, such as dissipationless surface currents and robustness
against backscattering. Many platforms used for analogues of topological electronic systems
showcasing unique strengths and limitations are currently being studied in the drive towards
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Figure 2.8: The landscape of topological quantum systems: Schematic showing the
different areas of topological quantum matter.

new applications in topological photonics, such as cold atoms [133], liquid helium [134],
polaritons [135], acoustic [136] and mechanical systems [137].

The final area that I briefly mention to complete the discussion of topological quantum
matter is that of topological defects - a topic well known in cosmology [138–140], but
also with its place in condensed matter [134, 141–143]. Topological defects are defects in
a material or field due to symmetry breakdown, and are fundamental in the explanation
of many interesting phenomena in condensed matter, such as the unusual hydrodynamic
properties of superfluid Helium-3 [144, 145]. Topology has found itself integral to many
topics in condensed matter and other disciplines beyond - it is a booming area intersecting
multiple fields of work with common mathematical techniques and phenomena.
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3. Theory of light

This chapter deals with the optics and photonics theory needed to understand the work of
this thesis. Much of what will be covered at the start of the chapter should be familiar
from undergraduate electromagnetism, but I include it for completeness and to introduce
notation that I will use throughout the rest of the thesis.

I start with the classical, macroscopic formulation of Maxwell’s equations. These
equations allow us to understand the effects of light on bulk materials, such as induced
polarisation and bound charge density. This theory is needed to understand the work on
topological polaritons and the modification of the photonic local density of states using TI
nanostructures covered in Chapter 6. I discuss how Maxwell’s equations can be reformulated
as the wave equation for electromagnetic fields and the importance of polarisation
of these fields. A good understanding of polarisation is needed to calculate the selection
rules of TI nanoparticles coupled with light, which are derived and used in Chapter 5 and
also needed for Chapter 6.

In order to study the interactions of single photons interacting with TI nanostructures, as
covered in Chapter 5, it is important to understand the quantised formulation of light.
Readers will probably be familiar with second quantisation and modes of the quantum
simple harmonic oscillator (QSHO), but the link to electromagnetism is not always explicitly
made in undergraduate quantum mechanics courses and so I cover this in some detail. My
favourite classical electromagnetism references are [146–148] and the treatment of quantised
fields is covered nicely in [149, 150] so I point the reader to these resources for additional
reading.

We also need to cover the fundamentals of light-matter interactions, so I introduce the
light-matter interaction Hamiltonian and the electric dipole approximation. I introduce the
concept of spectral densities to calculate light-mediated transition rates between
electronic states. This is a less common but very powerful approach to calculating transition
rates. This method will then be employed in Chapter 5 to describe how light-mediated
transitions of TQDs are modified by the presence of a cavity. The method of spectral
densities can be found in more detail in [151, 152].

I cover the concept of lasing, which is needed to motivate and understand the results on
TQD lasing in Chapter 5.

I introduce the idea of Green’s functions, a powerful formalism for understanding how
electromagnetic fields behave with non-trivial boundary conditions. I also introduce the
concept of the photonic density of states (DOS). I use Green’s functions and the

31



photonic density of states in Chapter 6 to demonstrate how TI nanostructures can alter
the electromagnetic properties of their environment.

3.1 Maxwell’s equations

"I have also a paper afloat, with an electromagnetic theory of light, which,
until I am convinced to the contrary, I hold to be great guns."

- James Clerk Maxwell1

Maxwell’s equations are some of the most well-known equations in science. These four
differential equations form the theoretical basis for describing classical electromagnetism.
We start with macroscopic Maxwell’s equations, which reduce to microscopic (vacuum)
Maxwell’s equations when material bulk effects can be neglected.

3.1.1 Macroscopic Maxwell’s equations

In SI units (which I attempt to use consistently throughout this thesis), the inhomogeneous,
macroscopic equations are given by

Gauss′ law ∇ ·D(r, t) = ρf(r, t), (3.1)

Gauss′ law for magnetism ∇ ·B(r, t) = 0, (3.2)

Faraday′s law of induction ∇×E(r, t) = −∂B(r, t)

∂t
, (3.3)

Ampere′s law ∇×H(r, t) = Jf(r, t) +
∂D(r, t)

∂t
, (3.4)

where E(r, t) and B(r, t) are the electric field strengths and magnetic flux density respec-
tively, D(r, t) and H(r, t) are the displacement field and magnetizing field, and ρf(r, t) and
Jf(r, t) denote the free charge and current densities. These equations are demonstrated
diagrammatically in Figure 3.1. Maxwell’s equations imply that all classical electromagnetic
radiation is ultimately generated by accelerating charges2. These quantities satisfy boundary

1Quote taken from a letter to C. H. Cay, 5th January 1865. James Clerk Maxwell was a 19th century
physicist, who discovered that electric and magnetic fields could be described in the single, unified theory
of electromagnetism. His work arguably laid the foundations for much of modern physics, and Einstein is
said to have been quoted "I stand on the shoulders of Maxwell". For all the radical vision he demonstrated
in science, he held incredibly conservative views on gender. He barred women from studying physics at
Cambridge when he established the Cavendish Laboratory, going as far as to pen several regrettable verses
of poetry on why women were unsuited to study the physical sciences. This decision was only reversed
during the tenure of Lord Rayleigh, some years later.

2We will not explicitly cover this, but the concept can be quickly understood by recalling that a stationary
charge generates a radial electric field, and then considering what happens to the radial and transverse
components of the field(s) when the charge undergoes a small acceleration.
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Figure 3.1: Maxwell’s equations: (a) Gauss’ law. Flux through a closed surface is
equal to the charge, qf enclosed by the surface. This is equivalent to saying that electric
fields lines must always start and end at charges. (b) Gauss’ law for magnetism.
Magnetic flux through a closed surface is always equal to zero. This is equivalent to saying
that magnetic field lines always join up, such that field lines entering and leaving a closed
surface always sum to zero. Said another way, magnetic monopoles do not occur. (c)
Faraday’s law of induction. A time-varying magnetic field, B, will always accompany a
spatially-varying, non-conservative electric field, E, and vice versa. (d) Ampere’s law. A
flowing electric current, If , gives rise to a magnetic field, H, which circles the current. A
time-changing displacement field, D, gives rise to a magnetic field, H, which circles D.

conditions (see Figure 3.2), such that

[D2(r, t)−D1(r, t)] · n̂ = ρf(r, t), (3.5)

[B2(r, t)−B1(r, t)] · n̂ = 0, (3.6)

n̂× [E2(r, t)−E1(r, t)] = 0, (3.7)

n̂× [H2(r, t)−H1(r, t)] = n̂× Jf(r, t). (3.8)

3.1.2 Auxiliary fields, polarization and magnetization

The definitions of the auxiliary fields (the displacement and magnetizing fields, D(r, t)

and H(r, t)) are given by

D(r, t) = ε0E(r, t) + P(r, t), (3.9)

H(r, t) =
1

µ0
B(r, t)−M(r, t), (3.10)

where P(r, t) is the polarisation field and M(r, t) is the magnetization field. These quantities
can in turn be described by the bound charge density ρb(r, t) and bound current density
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[D2(r, t) − D1(r, t)] ⋅ n̂ = ρf(r, t)
[B2(r, t) − B1(r, t)] ⋅ n̂ = 0
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Figure 3.2: Maxwell’s equations at an interface: Boundary conditions for Maxwell’s
equations. The tangential component of E is continuous across the surface, as is the
tangential component of H unless there is a surface current present. The normal component
of D is continuous unless there is a surface charge, and the normal component of B is
always continuous across the interface.

Jb(r, t), which are defined as

ρb(r, t) = −∇ ·P(r, t), (3.11)

Jb(r, t) = ∇×M(r, t) +
∂P(r, t)

∂t
. (3.12)

The total charge and current density are then described by

ρ(r, t) = ρb(r, t) + ρf(r, t), (3.13)

J(r, t) = Jb(r, t) + Jf(r, t). (3.14)

If the above relations are used to eliminate D(r, t) and H(r, t) from Maxwell’s equations, the
microscopic form of the equations is then recovered. For linear materials, the constitutive
relations (i.e. the specific relation between polarisation, magnetization and the auxiliary
fields) are particularly simple, in that P(r, t) and M(r, t) are approximately proportional
to E(r, t) and B(r, t) respectively, such that

D(r, t) = εE(r, t), (3.15)

H(r, t) =
1

µ
B(r, t). (3.16)

Interesting complications arise often arise, such as (i) inhomogeneous materials (such that
that ε and µ have spatial dependence), (ii) anisotropic materials (such that ε and µ are
tensors rather than scalars) and (iii) dispersive materials (ε and µ depend on the frequency
of the incoming light, ν). Anisotropy and dispersion are both relevant for the proper
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treatment of topological insulators at THz scales, and so will be revisited later in this thesis
(specifically in Chapter 6).

3.1.3 Microscopic Maxwell’s equations

Macroscopic Maxwell’s equations are incredibly important for studying the optical properties
of bulk materials and so we will continue to use them later in this chapter and in Chapter 6.
However, TI surface states occur (somewhat unsurprisingly) at the surface of the material
and optical transitions between surface states can be considered separate from bulk effects.
When we do not need to include contributions from the bulk, we can employ microscopic
Maxwell’s equations3. For the case that we are in vacuum, such that there is no
polarization or magnetization, the constitutive relations are given by

D(r, t) = ε0E(r, t), (3.17)

H(r, t) =
1

µ0
B(r, t), (3.18)

and Maxwell’s equations reduce to

∇ ·E(r, t) =
ρf(r, t)

ε0
, (3.19)

∇ ·B(r, t) = 0, (3.20)

∇×E(r, t) = −∂B(r, t)

∂t
, (3.21)

∇×B(r, t) = µ0

(
Jf(r, t) + ε0

∂E(r, t)

∂t

)
. (3.22)

3.2 The shape of light

I now introduce the vector potential, and demonstrate that Maxwell’s equations can be
reformulated into the form of the wave equation. This allows us to write an ansatz for
the fields and gain an intuition for how electromagnetic waves look. We also discuss choices
of polarisation basis. For now we continue to work in vacuum for simplicity (i.e. employing
microscopic Maxwell’s equations), but the ideas can easily be extended to the macroscopic
case.

3.2.1 Vector and scalar potentials

The form of Gauss’ law (Equation 3.19) suggests that E(r, t) can be rewritten in terms of a
scalar potential such that E(r, t) = −∇Φ(r, t) where

Φ(r, t) =
1

4πε0

∫
d3r′

ρf(r
′, t)

|r− r′|
. (3.23)

3Also known as vacuum Maxwell’s equations.
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However, in the presence of a time-varying magnetic field (which in reality is always the
case if there is a time-varying electric field), the electric field is no longer conservative (such
that ∇ × E(r, t) 6= 0 as per Faraday’s law of induction given in Equation 3.21) and so
can no longer be written simply in terms of a scalar potential. This can be remedied by
introducing the magnetic vector potential, A(r, t), such that

B(r, t) = ∇×A(r, t). (3.24)

Then, E(r, t) is of the form

E(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
. (3.25)

Maxwell’s equations and any resulting calculations can then be written in terms of either
E(r, t) and B(r, t) or A(r, t) and Φ(r, t).

3.2.2 The wave equation

For now we will not be considering systems with free charge densities or charge currents,
meaning that ρf(r, t) = Jf(r, t) = 0, and consequently Φ(r, t) = 0. By working in the
Coulomb gauge4, such that ∇ ·A(r, t) = 0, we see that Ampere’s law (Equation 3.22)
becomes (making use of ε0µ0 = 1/c2) the homogeneous wave equation,

∇2A(r, t)− 1

c2

∂2A(r, t)

∂t2
= 0. (3.26)

The Fourier expansion of A(r, t) can be written as

A(r, t) =
∑
β=1,2

∑
k

Aβ,k(r, t) =
∑
β,k

[
aβ,k(t)uβ,k(r) + a∗β,k(t)u∗β,k(r)

]
, (3.27)

and for periodic boundary conditions, uβ,k(r) can be written in the form uβ,k(r) = eik·reβ

or uβ,k(r) = sin(k ·r)eβ . The vector k is the momentum of the wave and eβ are unit vectors
in the plane perpendicular to k. aβ,k(t), a∗β,k(t) are the time-dependent Fourier coefficients.
In later chapters we will see that the sinusoidal solution is often convenient, but for now we
will take the exponential form, such that

A(r, t) =
∑
β=1,2

∑
k

Aβ,k(r, t) =
∑
β,k

[
eik·raβ,k(t)eβ + e−ik·ra∗β,k(t)e∗β

]
. (3.28)

When plugged into Equation 3.26, we find the time-dependence of the Fourier coefficients
such that aβ,k(t) ∝ e−iωkt, with ωk = c|k|. The fields can now easily be found from A(r, t),

4I briefly discuss gauge choices in Appendix B.3.
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such that

E(r, t) =
∑
β,k

Eβ,k(r, t) = i
∑
β,k

ωk

[
eik·raβ,k(t)eβ − e−ik·ra∗β,k(t)e∗β

]
, (3.29)

B(r, t) =
∑
β,k

Bβ,k(r, t) = i
∑
β,k

[
eik·raβ,k(t) (k× eβ)− e−ik·ra∗β,k(t)

(
k× e∗β

)]
. (3.30)

We thus have the picture (denoted in Figure 3.3a) of a light wave propagating in the
direction of k, with E(r, t) perpendicular to k and described by basis vectors e1 and e2,
and B(r, t) is perpendicular to both k and E(r, t). The Hamiltonian of the field has the
form

Hrad =
ε0
2

∫
V

(∣∣E(r, t)
∣∣2 +

∣∣B(r, t)
∣∣2) d3r

= V ε0
∑
β,k

ω2
k

[
aβk(t)a∗β,k(t) + a∗β,k(t)aβk(t)

]
.

(3.31)

Currently this Hamiltonian (and thus the total energy of the system) appears to grow with
volume, V , and so the fields will need to be normalised - which can be done via the specific
form of aβ,k(t) and a∗β,k(t) - if we wish to maintain a sensible expression for very large
system sizes.

3.2.3 Light polarisation

For light propagating in the direction k̂ = (sinϑ0cosϕ0, sinϑ0sinϕ0, cosϑ0), the polarisation
vectors e1 and e2 reside in the plane perpendicular to k̂ (depicted in the inset of Figure 3.3a),
described by the two orthonormal vectors

r1 = (cosϑ0cosϕ0, cosϑ0sinϕ0,−sinϑ0) (3.32)

r2 = (−sinϕ0, cosϕ0, 0), (3.33)

and so general polarisation vectors are given by

e = aeiα1r1 +
√

1− a2eiα2r2. (3.34)

For light travelling parallel to the z-axis, k̂ = (0, 0, 1), i.e. ϑ0 = 0,

e = aeiα1(cosϕ0, sinϕ0, 0) +
√

1− a2eiα2(−sinϕ0, cosϕ0, 0). (3.35)

We can recover common basis choices such as linear polarisation, such that ϕ0 = 0,
α1 = α2 = 0 and a = 0 or 1 (illustrated in Figure 3.3b i),

ex = (1, 0, 0) and ey = (0, 1, 0), (3.36)
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Figure 3.3: The shape of light: (a) A schematic of an electromagnetic wave and its
components. E and B are perpendicular to each other, and lie in the plane perpendicular
to k. This plane is described by two basis vectors, e1 and e2. Wavelength λ is measured
between two adjacent wave maxima. (b) The polarisation of the light wave is described
in terms of e1 and e2, which need not be orthogonal, but should be linearly independent.
Common polarisation bases are (i) linear and (ii) circular polarisation.

or circular polarisation such that a = 1/
√

2, ϕ0 = 0, α1 = 0 and α2 = ±π/2 (illustrated in
Figure 3.3b ii), and so

eLH =
1√
2

(1, i, 0) and eRH =
1√
2

(1,−i, 0). (3.37)

There are many (in fact, infinite) polarisation basis vectors, but so long as two linearly
independent vectors in the plane perpendicular to k̂ are chosen, the polarisation of the
light can be fully described. We will come back to polarisation in Chapter 5, and will
demonstrate that it is important when calculating the selection rules of TQDs interacting
with light.

3.3 Quantisation of light

When dealing with electronic systems quantum-mechanically, it is often sufficient to use a
semi-classical approach to describe their interactions with the electromagnetic field, such
that the field is treated classically. However it will sometimes be necessary to describe a
system in a purely quantum way, such that the electromagnetic field is also quantised. We
will use this in Chapter 5. We will now cover the method of second quantisation5 to
describe the electromagnetic field in terms of photons.

5First quantisation describes the semi-classical treatment of quantum systems, in which the position
and momentum of particles are quantised, but the surrounding environment (such as the electromagnetic
field) is treated classically. In second quantisation, the fields are also quantised.
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We have already done most of the groundwork needed to describe photons by writing
the Fourier expanded form of E(r, t) and B(r, t) (given in Equations 3.29 and 3.30 in
Section 3.2.2). Now we simply promote the Fourier coefficients aβ,k, a∗β,k to operators,
and explicitly write the time-dependence (on the understanding that we choose to view
the system in the Heisenberg picture6 such that time-dependence is attached to the
operators). We thus have that

aβ,k(t)→

√
~

2ωkV ε0
aβ,ke

−iωkt, (3.38)

a∗β,k(t)→

√
~

2ωkV ε0
a†β,ke

iωkt. (3.39)

The prefactor is chosen so that the Hamiltonian (and thus photon energy) has a simple form,
which we will shortly illustrate. Also, although hats are often used to denote operators (e.g.
âβ,k), the context should be clear from here onwards so I preemptively drop the hats to
save on extra notation.

The operators obey the bosonic commutation relations given by[
aβ,k, a

†
β′,k′

]
= δk,k′δβ,β′ and

[
aβ,k, aβ′,k′

]
=
[
a†β,k, a

†
β′,k′

]
= 0, (3.40)

and act on photon states

|nβ,k〉 =
1√
nβ,k!

(
a†β,k

)nβ,k
|0〉, (3.41)

(where |0〉 is the vacuum state) in the following way,

aβ,k|nβ,k〉 =
√
nβ,k|nβ,k − 1〉 and a†β,k|nβ,k〉 =

√
nβ,k + 1|nβ,k + 1〉, (3.42)

leading us to describe a†β,k, aβ,k, as creation and annihilation operators respectively. Pro-
moting the Hamiltonian (first given in Equation 3.31) of the system to its operator form,
we see that

Hrad =
∑
β,k

~ωk

(
a†β,kaβ,k +

1

2

)
. (3.43)

This is nothing but the Hamiltonian of a set of independent quantum Harmonic oscil-

6As opposed to the Schrödinger picture in which the state vectors evolve with time, or the interaction
picture in which operators (and thus observables) as well as state vectors evolve with time.
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lators. The quantised operator fields now become

A(r, t) =
∑
β,k

Aβ,k(r, t) =
∑
β,k

√
~

2ωkV ε0

[
ei(k·r−ωkt)aβ,keβ + e−i(k·r−ωkt)a†β,ke

∗
β

]
, (3.44)

E(r, t) =
∑
β,k

Eβ,k(r, t) = i
∑
β,k

√
~ωk

2V ε0

[
ei(k·r−ωkt)aβ,keβ − e−i(k·r−ωkt)a†β,ke

∗
β

]
, (3.45)

B(r, t) =
∑
β,k

Bβ,k(r, t)

= i
∑
β,k

√
~ωk

2V ε0

[
ei(k·r−ωkt)aβ,k (k× eβ)− e−i(k·r−ωkt)a†β,k

(
k× e∗β

)]
.

(3.46)

3.4 Light-matter interactions

Now that we have successfully quantised the electromagnetic field, we study photon-
mediated electronic transitions. This topic is discussed in generality here (i.e. generic,
discrete electronic states) and no boundary conditions specified on the electric field. This
will then be used to address topological electronic systems in Chapters 5 and 6, both in
free space and within a cavity.

3.4.1 The interaction Hamiltonian

For a single-electron system in a time-dependent electromagnetic field (with no free charges
or currents), the Hamiltonian of the system (minus Hrad given in the previous subsection)
is given by

H =
1

2me
(p + eA(r, t))2 + V (r), (3.47)

where p is the momentum operator of the electron, A(r, t) is the electromagnetic vector
potential described in Section 3.1 and V (r) describes other potentials felt by the electron.
Expanding this Hamiltonian, we find

H = Helec + Hint + Hdia, (3.48)

where

Helec =
p2

2me
+ V (r) (3.49)

is the unperturbed Hamiltonian of the electron,

Hint =
e

me
A(r, t) · p (3.50)

40



is the paramagnetic term describing the coupling of the atom to the electromagnetic field
and

Hdia =
(eA(r, t))2

2me
(3.51)

is the diamagnetic term, which, as we are primarily interested in the absorption and emission
of single photons, is taken to be negligible. Hint tells us about the strength and nature of
the photon-mediated electronic transitions, where

Hint
β,k(r, t) =

e

me
Aβ,k(r, t) · p (3.52)

is specifically the Hamiltonian describing the atom interacting with radiation of polarisation
β and momentum k. Writing it out explicitly using Equation 3.44,

Hint
β,k(r, t) =

e

me

√
~

2ωkV ε0

[
ei(k·r−ωkt) aβ,keβ · p + e−i(k·r−ωkt) a†β,ke

∗
β · p

]
. (3.53)

This Hamiltonian will act on the combined7 state of the initial electronic and photonic
states, |Ψi〉 ⊗ |nβ,k〉 and bring it to a new state |Ψf〉 ⊗ |n′β,k〉, where there are initially nβ,k
photons in mode (β,k) and n′β,k after the transition. The interaction is described by the
expression 〈Ψf | ⊗ 〈n′β,k|Hint

β,k(r, t)|Ψi〉 ⊗ |nβ,k〉, and writing this out in full and separating
into the electronic and photonic contributions, we have

e

me

√
~

2ωkV ε0
〈Ψf |ei(k·r−ωkt)eβ · p|Ψi〉〈n′β,k|aβ,k|nβ,k〉

+
e

me

√
~

2ωkV ε0
〈Ψf |e−i(k·r−ωkt)e∗β · p|Ψi〉〈n′β,k|a

†
β,k|nβ,k〉.

(3.54)

For an electronic structure with centre of mass at r0 we can rewrite the spatial component
of the exponential as

eik·r = eik·r0eik·(r−r0). (3.55)

For electronic structures whose spatial expanse is much smaller than the wavelength of
irradiating light, eik·(r−r0) = 1 + ik · (r − r0) + ... ≈ 1, and so eik·r ≈ eik·r0 . This is the
electric dipole approximation (E1). This simplification lets us move the exponential
outside of the expectation value and rewrite the expectation value as8

〈Ψf |eβ · p|Ψi〉 = imeωi,f〈Ψf |eβ · r|Ψi〉, (3.56)

7The combined state is described using the tensor product, ⊗, outlined in Appendix A.2.
8Using that [r,Helec] = i~p/me
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where ωi,f = (Ef − Ei)/~. We find it convenient to define the matrix element

Vi,f,β = 〈Ψf |eβ · r|Ψi〉. (3.57)

By noting the relationship between Aβ,k(r, t) and Eβ,k(r, t) (Equations 3.44 and 3.45
respectively), the interaction in the electric dipole approximation can then be described by

〈Ψf | ⊗ 〈n′β,k|Hint
β,k(r, t)|Ψi〉 ⊗ |nβ,k〉

=
e

me
〈Ψf | ⊗ 〈n′β,k|Aβ,k(r, t) · p|Ψi〉 ⊗ |nβ,k〉

(3.58)

≈ −e
ωi,f

ωk
〈Ψf | ⊗ 〈n′β,k|Eβ,k(r0, t) · r|Ψi〉 ⊗ |nβ,k〉. (3.59)

In the limit of perfect resonance such that ωi,f = ωβ,k, this leads to the rather nice
approximation that

Hint
β,k(r, t) ≈ −eEβ,k(r0, t) · r. (3.60)

For certain situations (such as cavities, as will be covered in Chapter 5), we should be
cautious as the resonance condition is not necessarily fulfilled. Generally, I work in the
electric dipole approximation for the research areas of this thesis as this is the dominant
regime for processes in which we are interested (as we will see in Chapter 5). For discussion
of interactions beyond E1, see Appendix B.4.

3.4.2 Transitions

The parts of the expression in Equation 3.54 pertaining to the photonic states are the
expectation values 〈n′β,k|aβ,k|nβ,k〉 and 〈n′β,k|a

†
β,k|nβ,k〉, where a

†
β,k(aβ,k) were defined in

Section 3.3. For a given nβ,k, the only non-zero expectation values will be for n′β,k = nβ,k±1.

For |nβ,k〉 →
√
nβ,k|nβ,k − 1〉, a photon is removed from mode (β,k) and its energy is

absorbed by the electronic system, resulting in the excitation of the electronic system to a
higher energy, as illustrated in Figure 3.4a. This process is stimulated absorption. If
there are zero photons in mode (β,k) such that nβ,k = 0, this process cannot occur. For
|nβ,k〉 →

√
nβ,k + 1|nβ,k + 1〉, in the presence of a photon in mode (β,k) a photon with the

same momentum, polarization and phase9 is created, increasing the number of photons in
that mode by 1. The increase in energy of the photon field is transferred from the electronic
system, which undergoes a loss of energy. This process is called stimulated emission and
is illustrated in Figure 3.4b i. Unlike absorption processes, an emission process can occur
even if nβ,k = 0. This process is known as spontaneous emission (see Figure 3.4b ii) and

9As the creation and annihilation operators are non-hermitian, their eigenvalues are in general complex,
such that a|ϕ〉 = ξ|ϕ〉 where ξ = |ξ|eiϑ. Stimulated processes necessarily involve photons with the same
phase, and as the phase does not appear in observables of interest in this thesis, we acknowledge its existence
and then conveniently ignore it.
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a b i ii

Stimulated emission Spontaneous emissionStimulated absorption
|nβ,k⟩ → nβ,k |nβ,k −1⟩ |nβ,k⟩ → nβ,k + 1 |nβ,k + 1⟩

Figure 3.4: Absorption and emission events: (a) Stimulated absorption, in which
a photon is absorbed, causing the electronic system to be excited to a higher energy
corresponding to the energy of the absorbed photon. (b i) Stimulated emission, in
which an incoming photon interacts with the electron system, triggering the emission of a
photon with the same momentum and polarisation of the original photon. (ii) Spontaneous
emission, in which a photon is emitted with random direction and polarisation.

it should be highlighted that unlike photons which are emitted via a stimulated process,
spontaneously emitted photons are emitted with random direction and phase.

3.4.3 Calculating transition rates

We have so far described which types of transitions can occur, but we are also very much
interested in how quickly these transitions occur. We thus now discuss how to calculate the
transition rates for photon-mediated electronic transitions. The rate of transition,
Γi→f,β,k, between two electronic states, |Ψi〉 → |Ψf〉, facilitated by radiation of polarisation
β and momentum k is given by

d

dω
Γi→f,β,k =

2π

~2
Si,f,β,k(ω)δ(ω − ωi,f), (3.61)

where Si,j,β,k(ω) is the spectral density. The spectral density is defined using either the
power or energy spectral density, depending on the nature of the system being studied. The
spectral density describes the frequency-dependent coupling of the electronic states with
the electromagnetic field. This method has a similar spirit to work on quantum systems
coupled to noise [151, 152], and gives a compelling interpretation of the continuum of
electromagnetic states acting as a quantum noise source. I feel this gives a complementary
insight on quantum electrodynamics [149, 153] which is rarely covered in standard
courses. This method also allows us to calculate transition rates in both vacuum and
cavities with the same method, while treating both the spatial and temporal components
of the fields rigorously.10

10Fermi’s golden rule offers an alternative path to calculating transition rates, tying in nicely with the
concept of the DOS covered in Section 3.7. However, as discussed in Appendix B.5, transition rates with
spatial dependence do not always simplify nicely into the form of Fermi’s golden rule, giving additional
motivation for employing the method of spectral densities instead.
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Note that the δ-function in Equation 3.61 ensures conservation of energy, where ~ωi,f =

Ef − Ei is the energy difference between the two electronic states. For multi-fermionic
electronic states, this rate assumes that the initial state is occupied and final state is
unoccupied, otherwise Fermi-blocking prevents the transition. The physical effect of this on
rate equations and photon-mediated multi-electron dynamics is commented on in Section 3.5,
and multi-level electron systems interacting via the electromagnetic field are discussed in
much more detail in Chapter 5.

For steady-state electric fields (i.e. energy held by the electric field is not being lost from
the system), we are interested in the power spectral density, such that

Si,f,β,k(ω) = lim
T→∞

1

T

∣∣∣∣〈Ψf | ⊗ 〈n′β,k|H̃int
β,k(r, ω)|Ψi〉 ⊗ |nβ,k〉

∣∣∣∣2, (3.62)

where

H̃int
β,k(r, ω) =

1√
2π

∫ T
2

−T
2

Hint
β,k(r, t)eiωtdt (3.63)

and there are initially nβ,k photons in mode (β,k), and n′β,k after the transition.

For transient electric fields, such as an electric field confined to an imperfect cavity with a
cavity timescale τcav, we work with the energy spectral density of the field, given by

Si,f,β,k(ω) =
1

τcav

∣∣∣∣〈Ψf | ⊗ 〈n′β,k|H̃int
β,k(r, ω)|Ψi〉 ⊗ |nβ,k〉

∣∣∣∣2. (3.64)

The characteristic timescale of the system is τcav, rather than T (in the limit that T →∞)
as in free-space. Equations 3.62 and 3.64 are very general expressions, and we will use them
explicitly in Chapter 5 for TI nanostructure states interacting with light.

It is crucial to note that the spectral densities, and thus transition rates of stimulated
processes will be proportional to the number of photons, nβ,k, present at the required
frequency, whereas spontaneous emission is unaffected by photon density. This will be
demonstrated and used in Chapter 5.

3.5 Lasing

The aim of lasing11 is the production of multiple photons of the same momentum, po-
larisation and phase (i.e. coherent photons). Invented in 196012, traditional lasers use
an external pump to excite electrons within the atoms of a lasing material — usually a
gas, crystal, or semiconductor. With strong enough pumping, more electrons are in the

11The word laser is an acronym, standing for light amplification by stimulated emission of radiation.
12The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on

theoretical work by Charles Hard Townes and Arthur Leonard Schawlow [154, 155].
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excited state than the ground state, such that population inversion is achieved. When
one of these excited electrons falls back to its original state it spontaneously emits a photon,
which in turn stimulates another excited electron to emit a photon, and so on. An effect
can be achieved in which stimulated emission outpaces spontaneous emission and almost
all photons produced are coherent. Unlike the spreading beams of an incoherent source,
the photons in a laser emerge in a tightly packed stream with a single frequency. Spatial
coherence allows a laser to be focused to a tight spot, enabling applications such as laser
cutting [156] and lithography [157]. Spatial coherence also allows a laser beam to stay
narrow over great distances (collimation), enabling applications such as laser pointers and
lidar [158]. Lasers can also have high temporal coherence, emitting light with a very
narrow spectrum (so narrow that they can emit a single colour of light). Alternatively,
temporal coherence can be used to produce broad-spectrum pulses of light with durations
as short as a femtosecond13 (known as ultrashort pulses).

Lasers are ubiquitous in modern technologies. Most lasers currently in commercial use
operate in the infrared (300 GHz14 - 430 THz) or visible range (400-790 THz), as these
energy scales are naturally accessible in electronic systems. Their applications can be
found in electronic equipment [159–161], communication technologies [162], bio-medical
and dentistry applications [163–165], manufacturing [166, 167], military [168] and law
enforcement devices [169–171].

In order to understand the dynamics leading to lasing, we will study the rate equations
governing discrete electronic energy levels coupled by light. The transition rates by which
electrons are excited between levels can be calculated as per Section 3.4.3, specific to the
electronic system in question.

Let us say we have N two-level electronic systems, each with a single electron. The ground
state has energy E1 and occupation N1, and the excited state has energy E2 and occupation
N2, where N = N1 +N2. The system is illustrated in Figure 3.5a i. We pump the system
via a resonant transition, where ~ω2,1 = E2 − E1, via a constant bath of photons with
frequency ω2,1. We wish to find the condition for lasing in this system, such that stimulated
emission overcomes spontaneous emission.

The time-evolution of the occupation of the states can be found from

dN2

dt
= −N2Γspon

2→1 − Γstim
2→1(N2 −N1), (3.65)

dN1

dt
= −dN2

dt
, (3.66)

where we have used that Γstim
2→1 = Γabs

1→2 and the constraint that N = N1 +N2, is constant.
The second equation is simply the statement that N is constant. Focusing on the first of

13A femtosecond is 10−15s.
14Giga = 109.
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Figure 3.5: Lasing: (a) A two level system such as (i) cannot reach population inversion,
but at most can reach equal occupancy of its two levels as demonstrated in (ii) the time
evolution of the system, where at steady-state N2 = N1. b For a three level system as
shown in (i), if Γstim

3→2 � Γstim
3→1, Γstim

2→1 it is possible to reach population inversion such that
N2 > N1. Spontaneous emission is considered negligible for both systems.
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the two equations, for stimulated emission to dominate over spontaneous emission we need
that

Γstim
2→1(N2 −N1) > N2Γspon

2→1, (3.67)

and so

N2 −N1

N2
>

Γspon
2→1

Γstim
2→1

. (3.68)

Generally Γspon
2→1 � Γstim

2→1, such that

N2 −N1

N2
' 0, (3.69)

and so the condition for lasing is simply population inversion, such that N2 −N1 > 0.
This is intuitive - the stimulated absorption and emission rates are equal, and so for
stimulated photons to be emitted more than absorbed, the excited state needs a higher
occupation than the ground state. Note that this is a necessary but not sufficient condition
for lasing - a feedback mechanism such as a cavity is needed, so that coherent photons
remain in the system at a time-scale which allows them to trigger subsequent stimulated
processes. This idea is discussed heavily in Chapter 5. Population inversion does not occur
naturally in thermal equilibrium (as will be revisited in Chapter 5) and so a mechanism for
population inversion (such as pumping) is needed.

At steady-state, the occupation of the energy levels N1
0 and N2

0 is constant, such that

dN0
2

dt
= −N0

2 Γspon
2→1 − Γstim

2→1(N0
2 −N0

1 ) = 0, (3.70)

dN0
1

dt
= −dN

0
2

dt
= 0. (3.71)

Rearranged, the first equation gives us the steady-state relation

N0
2 = N0

1

Γstim
2→1

Γspon
2→1 + Γstim

2→1

, (3.72)

and so it follows that N0
2 ≤ N0

1 .

This result means that we cannot achieve steady-state population inversion in a
two level system. The upper-limit of the dynamics (for which N0

2 = N0
1 ) is given in

Figure 3.5a ii.

We now repeat the same procedure for a three-level system, in which the third (and highest)
energy level, E3, is metastable, and so electrons undergo a fast, non-radiative decay to level
E2. We pump from energy level E1 and aspire to lase between energy levels E2 and E1.
This system is given diagrammatically in Figure 3.5b i. The rate equations for occupation
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of the three levels are given by

dN3

dt
= −N3

(
Γnon−rad

3→2 + Γspon
3→1

)
+ Γstim

3→1(N1 −N3), (3.73)

dN2

dt
= −N2Γspon

2→1 − (N2 −N1)Γstim
2→1 +N3Γnon−rad

3→2 , (3.74)

dN1

dt
= N3Γspon

3→1 +N3Γstim
3→1 +N2Γspon

2→1 −N1Γstim
3→1 −N1Γstim

2→1 +N2Γstim
2→1. (3.75)

As before, we assume a bath of photons at the pumping frequency ω3,1, and feedback in
the lasing frequency ω2,1 (i.e. we assume the electronic structure is in a cavity, tuned to
resonance with the lasing frequency). At steady state,

0 = −N0
3

(
Γnon−rad

3→2 + Γspon
3→1

)
+ Γstim

3→1(N0
1 −N0

3 ), (3.76)

0 = −N0
2 Γspon

2→1 − (N0
2 −N0

1 )Γstim
2→1 +N0

3 Γnon−rad
3→2 , (3.77)

0 = N0
3 Γspon

3→1 +N0
3 Γstim

3→1 +N0
2 Γspon

2→1 −N
0
1 Γstim

3→1 −N0
1 Γstim

2→1 +N0
2 Γstim

2→1. (3.78)

We assume that at steady state, spontaneous processes are much slower than stimulated
processes, such that

N0
3 Γnon−rad

3→2 = Γstim
3→1(N0

1 −N0
3 ), (3.79)

(N0
2 −N0

1 )Γstim
2→1 = N0

3 Γnon−rad
3→2 , (3.80)

(N0
2 −N0

1 )Γstim
2→1 = (N0

1 −N0
3 )Γstim

3→1. (3.81)

From the first equation, N0
1 ≥ N0

3 , and so it follows from the third equation that N0
2 ≥ N0

1 .
We thus immediately find the hierarchy that N0

2 ≥ N0
1 ≥ N0

3 . For optimal population
inversion in the lasing transition (such that N0

2 −N0
1 is maximal, with the constraint that

N = N0
1 +N0

2 +N0
3 ), we need that

Γnon−rad
3→2 � Γstim

3→1,Γ
stim
2→1, (3.82)

and thus N0
3 is as low as possible, such that N0

2 > N0
1 � N0

3 . From the third equation, to
obtain increasingly better population inversion, Γ3→1 must be increased, thus pumping
the system with increased intensity. In Figure 3.5a ii I have plotted an exemplary 3-level
system for which population inversion is achieved between E2 and E1.

As already emphasised, population inversion is necessary but not sufficient for lasing.
Rates for stimulated processes rely on the number of coherent photons present at the
lasing frequency, via the relation Γstim

2→1 = cn1,2σ2→1, where σ2→1 is the interaction cross-
section15, and the number of coherent photons is time-varying. We must also assume the
system is in a cavity, such that a feedback mechanism (such as mirrors) is present to allow
the photons to re-interact with the electronic structure once emitted. The system will never

15This is simple to derive, and is given in Appendix B.6.

48



be completely perfect, and as such there will be losses - some losses are even necessary for
lasing, otherwise coherent photons would never be emitted from the system to produce a
functional laser. We measure the losses by the cavity life-time, τcav, and can also include
intrinsic losses such as absorption by the cavity walls, quantified by α. The rate of change
of coherent photon number can then be described by

dn1,2

dt
= Γstim

2→1 (N2 −N1)− n1,2

τcav
− α n1,2 (3.83)

= n1,2

[
c σ2→1 (N2 −N1)− 1

τcav
− α

]
, (3.84)

For a constant or increasing number of coherent photons,

σ2→1(N2 −N1) ≥ 1

cτcav
+
α

c
, (3.85)

which for a perfect cavity (such that τcav →∞) and no intrinsic losses, would reduce to
the minimal condition of population inversion. We thus define a better metric to measure
for lasing, called gain, defined as

G = σ2→1(N2 −N1). (3.86)

For no population inversion, G is negative. The threshold for lasing is given by

Gth =
1

cτcav
+
α

c
. (3.87)

The systems used to demonstrate the concepts of lasing in this section have comprised
ensembles of N , non-interacting single-electron systems. Complications arise for multiple
electrons within a single set of energy levels, and either fermionic density equations or
a numerical method will need to used in order to include Pauli-blocking16, however the
general definitions and concepts remain the same. This will be covered more in Chapter 5.

3.6 Green’s functions

Green’s functions17 are an incredibly important and useful concept. In electromagnetism
problems, we solve differential equations with varying initial conditions, boundary conditions
and geometries. The method of Green’s functions allows us to solve certain types of
differential equations that often crop up in electromagnetic systems, and we will rely on
this method in Chapter 6. Resources I find indispensable for the topic of Green’s functions

16Pauli blocking is the phenomenon by which fermionic particles such as electrons cannot transition to a
state which is already occupied.

17Named for George Green, who was the first person to create a mathematical theory of electricity and
magnetism, amongst other achievements in maths and physics.
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include [147, 172–174], and other useful references are given by [175–178]. We start by
covering the mathematical basis of Green’s functions.

3.6.1 The mathematics of Green’s functions

We can write a general, inhomogeneous linear differential equation as

L A(r) = B(r), (3.88)

where A(r) is a vector field, B(r) is a known source function, and L is a linear differential
operator representing the unknown response of the system. The general solution of this
differential equation is given by the sum of the homogeneous solution (found by solving the
equation when B(r) = 0), and a particular inhomogeneous solution. By assuming that the
homogeneous solution (which we denote A0(r)) is already known, our mission is to find an
arbitrary, particular solution to Equation 3.88. To do so, we begin by studying the simple
inhomogeneous case

L Gi(r, r
′) = ni δ(r− r′) (i = x, y, z), (3.89)

where ni is an arbitrary, constant unit vector. We can write these three equations compactly
as a single equation, by introducing the concept of dyads. A dyad is a quantity that has
magnitude and two associated directions.18 We introduce the dyadic Green’s function,19

G(r, r′), and rewrite Equation 3.89 as

L G(r, r′) = I δ(r− r′), (3.90)

where L acts on each column of G(r, r′) separately, and I is the unit dyad. We post-
multiply both sides of Equation 3.90 by B(r′), and integrate both sides over a volume V ,
such that∫

V
dV ′ L G(r, r′)B(r′) =

∫
V
dV ′δ(r− r′)B(r′). (3.91)

The right-hand side can be identified as B(r), and so recalling from Equation 3.88 that
B(r) = L A(r), we can write

L A(r) =

∫
V
dV ′ L G(r, r′)B(r′). (3.92)

By taking the operator L out of the integral on the right-hand side,20 the solution of
Equation 3.88 can be written as

18I give a little more information on dyads in Appendix A.3.
19A dyadic is the sum of dyads.
20If G(r, r′) is singular at the point = r − r′ we should be cautious of simply extracting L from the

integral and this subtlety is discussed more in Reference [174]. This issue can largely be ignored by only
considering field points r sensibly far away from the source point, r’, such that the volume of integration
does not include r′.
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A(r) =

∫
V
dV ′ G(r, r′)B(r′). (3.93)

With Equation 3.93 giving the solution of the differential equation, A(r), in terms of G(r, r′)

and B(r′), our task has now been diverted to that of finding the Green’s function which
solves Equation 3.90 for the particular linear differential operator, L of the problem at hand.
The next sections are devoted to the discussion of how this can be applied to problems in
electromagnetism.

3.6.2 Deriving the Green’s function for the electric field

We now derive the Green’s function for the electric field. It is convenient to work with the
vector potential A(r, t) and scalar potential Φ(r, t). We recall from Section 3.2 that

B(r, t) = ∇×A(r, t), (3.94)

E(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
. (3.95)

Using these expressions, the linear constitutive relations, and assuming the usual time-
harmonic vector potential (such that A(r, t) = A(r)eiωkt + A∗(r)e−iωkt), Ampere’s law
(Equation 3.4) reduces to

∇× (∇×A(r)) = µ J(r)− iωkµε [iωkA(r)−∇Φ(r)] . (3.96)

We choose to work in the Lorenz gauge21, such that ∇ ·A(r) = iωkµεΦ(r). Using this
gauge condition and the mathematical identity ∇×∇× f(r) = −∇2f(r) +∇ (∇ · f(r)),
we can rewrite Equation 3.96 as

[
∇2 + k2

]
A(r) = −µ Jf(r). (3.97)

This is the inhomogeneous Helmholtz equation22, where k2 = |k|2 = ω2
kµε/c

2, and
∇2 +k2 is the Helmholtz operator. We can derive a similar equation for the scalar potential
Φ(r), such that

[
∇2 + k2

]
Φ(r) = −ρ(r)

ε
. (3.98)

21See Appendix B.3 for a short discussion of gauge choices.
22Hermann von Helmholtz was a physicist with broad-ranging scientific interests. He made contributions

in many fields, from physiology to physics, publishing on topics reaching from the philosophy of science to
optics, including the mathematics of the eye and vision.

51



We now have four Helmholtz equations (as Equation 3.97 holds independently for all three
components of A(r)), of the form

[
∇2 + k2

]
f(r) = −g(r). (3.99)

To obtain the scalar Green’s function G0(r, r′), we replace the source term by a single
point source and find

[
∇2 + k2

]
G0(r, r′) = −δ(r− r′). (3.100)

In free space, the only physical solution is

G0(r, r′) =
e±ik|r−r

′|

4π|r− r′|
. (3.101)

Physically, this is a spherical wave propagating away from or towards the origin. We can
then directly find the vector potential from

A(r) = µ

∫
V
dV ′ J(r′)G0(r, r′). (3.102)

A similar expression holds for Φ(r), with both expressions requiring knowledge of G0(r, r′).
We can thus calculate the vector and scalar potential for any known current distribution
and charge distribution. The particular form of G0(r, r′) in Equation 3.101 is for 3D
homogeneous space, and will take a different form in 2D space or a half-space.

From here, we can use A(r) and Φ(r) to find E(r) and B(r). Working with A(r) and Φ(r)

was straightforward as we could use scalar quantities. If we wish to solve directly for the
electric field, we must now use the dyadic Green’s function. The wave equation for the
electric field is given by

∇×∇×E(r) = −k2E(r) = iωkµ J(r). (3.103)

For each component of J(r) we can define a Green’s function, such that for i = (x, y, z),

∇×∇×Gi(r, r
′) = −k2 Gi(r, r

′) = niδ(r− r′). (3.104)

Combining all three components into a compact form using the dyadic Green’s function,
we have

∇×∇×G(r, r′) = −k2 G(r, r′) = I δ(r− r′). (3.105)

From here, we see that a particular solution for E(r) is given by

E(r) = iωkµ

∫
V
dV ′ G(r, r′)J(r′). (3.106)
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The general solution is thus

E(r) = E0(r) + iωkµ

∫
V
dV ′ G(r, r′)J(r′). (3.107)

For completeness, the corresponding magnetic field is given by

H(r) = H0(r) + iωkµ

∫
V
dV ′

[
∇×G(r, r′)

]
J(r′). (3.108)

In order to solve for E(r) and B(r) for a specific distribution of currents, we need to
determine G(r, r′). Applying the Lorenz gauge to Equation 3.95, we have that

E(r) = iωk

[
1 +

1

k2
∇∇·

]
A(r). (3.109)

Each column of G(r, r′) is simply the response of the system to a single point source current,
J(r) = −iδ(r − r′)ni/ωkµ0, as described by Equation 3.104. From Equation 3.102, the
vector current relating to each point source current is

A(r) = − i

ωk
G0(r, r′)ni, (3.110)

and inserting this vector potential for each component into Equation 3.109 we find the
three equations

Gi(r, r
′) =

[
1 +

1

k2
∇∇·

]
G0(r, r′) ni (i ∈ x, y, z), (3.111)

which, using the definition ∇G0 = ∇ · [G0I], we can group into a single equation using the
dyadic Green’s function, such that

G(r, r′) =

[
I +

1

k2
∇∇

]
G0(r, r′). (3.112)

We can now use this result to find the electric and magnetic fields for any configuration of
charges and currents.

3.6.3 Dipole radiation

As stated in Section 3.1, electromagnetic waves are generated by accelerating charges. To
good approximation, many sources can be considered dipoles23 and for this reason we now
use the Green’s function method to study the properties of dipole radiation. We can create
such a source by having a point charge undergo simple harmonic motion, such that it is

23When the dimension of the source is small compared to the wavelength of the light, then electric dipole
radiation gives the dominant contribution to the emitted radiation (compared to higher order multipoles).
We will come across this again in later chapters.
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oscillating with small displacement

a(t) = a0e
−iωkt, (3.113)

thus creating a simple oscillating dipole. The corresponding dipole moment is given by

µ(t) = µ0e
−iωkt, (3.114)

where µ0 = qa0. For a dipole placed at r0, the current density will likewise be time-harmonic
and take the form

J(r, t) =
∂µ(t)

∂t
δ(r− r0), (3.115)

such that

J(r) = −iωkµ0δ(r− r0), . (3.116)

From Equation 3.102, the vector potential will take the form

A(r) = −iωkµ
eik|r−r0|

4π|r− r0|
µ0, (3.117)

and

E(r) = ω2
kµG(r, r0)µ0, (3.118)

H(r) = −iωk [∇×G(r, r0)]µ0. (3.119)

In Cartesian coordinates, the dyadic Green’s function can be written as

G(r, r0) =
eikR

4πR

[(
1 +

ikR− 1

k2R2

)
I +

3− 3ikR− k2R2

k2R2

R⊗R

R2

]
, (3.120)

where R = r− r0, R = |r− r0| and R⊗R is the outer product of R with itself, as per the
definition of the outer product given in Appendix A.2. Plugging this in, and going through
rather laborious algebra we find that

H =
ck2

4π

(
k̂× µ

) eikR
R

(
1− 1

ikR

)
, (3.121)

E =
1

4πε0

[
k2
(
k̂× µ

)
× k̂

eikR

R
+
[
3k̂(k̂ · µ)− µ

]( 1

R3
− ik

R2

)
eikR

]
. (3.122)

3.6.3.1 Power dissipation in a homogeneous medium

We now calculate how much power is dissipated by a dipole in a homogeneous medium, so
we can later see how the power dissipation is affected by the presence of inhomogeneities.
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The fields have terms which vary as (kR)−1, (kR)−2 and (kR)−3. In the far-field, for
which R� λ, (kR)−1 terms dominate. Only the far-fields contribute to the time-averaged
power flow, and so we assume that we measure the effects of the dipole very far away from
the dipole itself24, where the fields reduce to

H =
µck2

4π

(
k̂× µ

) eikR
R

, (3.123)

E =
µc2k2

4π
k̂×

(
k̂× µ

) eikR
R

. (3.124)

The Poynting vector represents the directional energy flux of the electromagnetic field,
and is given by

S =
1

2
Re {E×H∗} , (3.125)

where the factor of 1/2 comes from time-averaging. The power radiated by a dipole can be
calculated by integrating S over a closed, spherical surface with normal n surrounding the
dipole, such that

P0 =

∫
dΩ r2 1

2
Re {n · (E×H∗)} . (3.126)

Using the far-field expressions for H and E given in Equations 3.123 and 3.124 respectively,
this reduces to

P0 =
|µ0|2

4πε

ω4

3c3
. (3.127)

3.6.3.2 Power dissipation in an inhomogeneous medium

We should now calculate how the power dissipation of the dipole will be affected by the
presence of an inhomogeneity (such as the presence of a surface, or an unusual boundary
condition such as a cavity) - we will need this in Chapter 6. According to Poynting’s
theorem [147], the radiated power of a time-harmonic current distribution in a linear
medium will be equal to the rate of energy dissipation, such that

P =
∂W

∂t
= −1

2

∫
V
dV Re {J∗(r) ·E(r0)} , (3.128)

where V is the source volume. This tells us that the energy radiated by the dipole is equal to
the work done by the dipole’s own field on the dipole itself. Recalling from Equation 3.116
that J(r) = −iωkµ0δ(r− r0), we can write the power dissipated by a dipole as

P =
ωk

2
Im [µ∗0 ·E(r0)] . (3.129)

24Radiative fields dominate in the far field - in the near field, E and B store a lot of energy and so there
is reactive power, which does not contribute to power flow.
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Inserting Equation 3.118, we can rewrite the dissipated power in terms of the Green’s
function, such that

P =
ω3
k|µ0|2

2c2ε0
Im [G(r0, r0)] . (3.130)

The electric field at the position of the dipole, r0, will be given as the sum of the electric
field produced by the dipole, E0(r0), and the electric field induced by the presence of
inhomogeneities in the system, Escat. We can thus write the electric field at r0 as

E(r0) = E0(r0) + Escat(r0). (3.131)

We can rewrite the normalised power dissipation as

P

P0
= 1 +

6πε0
|µ0|2

1

k3
Im {µ∗0 ·Escat(r0)} . (3.132)

This allows us to calculate the effect of an inhomogeneity on the ability of the electromagnetic
field to dissipate power. Depending on the sign (phase) of the scattered field returning to
the dipole, it enhances or suppresses power dissipation.

3.7 The photonic density of states (DOS)

The photonic density of states (DOS)25 describes the proportion of photonic states in
a system available for occupation as a function of energy (or frequency). The photonic
DOS can be modified by the surrounding environment, which is of paramount importance
in multiple applications, and will be used in Chapter 6.

The number of states dN(ω) between ω and ω + dω is by definition

dN(ω) = V g(ω)dω, (3.133)

where V is the volume occupied by the states and g(ω) is the density of states. This can
be written equivalently in k-space, where we consider states which lie in the infinitesimal
3D26 k-space volume, d3k, having a frequency ωk, such that

g(ωk)dωk = g(k)d3k. (3.134)

The density of states can then be found by summing over contributions from all states,

g(ω) =

∫
g(ωk)dωkδ(ω − ωk) =

∫
d3kg(k)δ(ω − ωk). (3.135)

25The density of states is often first encountered for electronic systems, but the concept for photonic
systems is governed by very much the same principles.

26A similar procedure can be made in 1D and 2D.
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The allowed states in k-space are given by a uniformly spaced grid of points given the correct
boundary conditions, and so the density of states in k-space is constant and independent of
k or ω, g(k) = 1/(2π)3, and so we can simplify Equation 3.135,

g(ω) =
1

(2π)3

∫
d3kδ(ω − ωk). (3.136)

We assume free space such that the dispersion relation is ωk = c|k| (plotted in Figure 3.6a),
and the states with a given frequency, ωk, will reside in a spherical shell of radius |k| and
thickness d|k|. The volume of this shell in k-space is given by d3k = 4πd|k||k|2. The
density of states can be calculated as

g(ω) =
4π

(2π)3

∫
d|k||k|2δ(ω − ωk) =

4π

(2π)3c3

∫
dωkω

2
kδ(ω − ωk) =

ω2

2π2c3
. (3.137)

Each photonic state can have two independent polarisations (as described in Section 3.2.3),
and so we must multiply this result by two to find the total density of states, thus given
by27

g(ω) =
ω2

π2c3
, (3.138)

which is plotted in Figure 3.6b. Generally, the photonic density of states is a continuous
function, however in certain (usually very well isolated) systems, such as high-quality
cavities and photonic crystals [1, 12], the density of states may be discrete. In this case,
integrating the DOS over an interval simply amounts to counting the number of modes in
the interval, and so we can equivalently write that

g(ω) = 2
∑
k

δ(ω − ωk). (3.139)

This is akin to a spectroscopy function, in which the function shows a peak whenever ω
coincides with an eigenfrequency, ωk. It reduces to the continuum version above by using
that

∑
k →

1
(2π)3

∫
d3k. In systems in which there is spatial distortion, it can be useful to

define the local density of states (LDOS) to describe the space-resolved density of states.
The photonic LDOS becomes particularly important in confined devices where reflection
and the resulting interference causes spatial variation in the density of states (such as in
highly confining optical cavities). For the photonic LDOS, the contribution of each state is
weighted by the normalised density of its electric field at a spatial point r, such that

g(r, ω) = 2
∑
k

Ek(r)2δ(ω − ωk), (3.140)

where Ek(r) gives the spatial variation of the electric field. When integrated over the spatial

27I will sometimes write this result as g3D(ω) if the context is not clear.
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Figure 3.6: The free space density of states: (a) Dispersion relation of light in free
space, ω = c|k|, and (b) the photonic density of states in 3D free space, g(ω) = ω2/c3π2.

expanse of the system (or summed, for discrete systems), the usual expression for the DOS
is recovered.

The final observation we will make is the link between the photonic LDOS, Green’s functions
and normalised power dissipation, a concept already raised in Section 3.6.3. We already
discussed in Section 3.6.3 that the power dissipated by a dipole in a homogeneous medium
is given by (repeating Equation 3.127 for clarity)

P0 =
|µ0|2

4πε0

ω4

3c3
, (3.141)

which we can rewrite in terms of the free-space LDOS,

P0 =
ω2|µ0|2π

12ε0
g(ω). (3.142)

The power dissipated in an inhomogeneous medium can be written in terms of the Green’s
function, such that (repeating Equation 3.130),

P =
ω3|µ0|2

2c2ε0
Im [G(r, r)] , (3.143)

which can be written in terms of the LDOS by identifying that28

g(r, ω) =
6ω

πc2
Im [G(r, r)] , (3.144)

28While the connection between Green’s functions and the LDOS is an important concept, it is not
directly needed to recover or understand the results of this thesis once the link between the LDOS and
power is made, so I refer the dedicated reader to additional references [179, 180].
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and so

P =
ω2|µ0|2π

12ε0
g(r, ω). (3.145)

We can thus write the LDOS in an inhomogeneous medium as

g(r, ω) =
ω2

π2c3

P

P0
, (3.146)

and so the photonic LDOS in a non-homogeneous medium is the LDOS in free space
multiplied by the normalised power dissipation, where the amplification or suppression
of the LDOS can be surmised from whether normalised dissipated power is greater or less
than 1. This formulation will be used in Chapter 6 to study the effect of TI nanostructures
on their surroundings using a dipole as a probe.
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Part II: Research Topics
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4. Topological Insulator Nanostructures

"There’s plenty of room at the bottom"
- Richard Feynman1

In Chapter 2 I introduced the symmetry-protected surface states of 3D topological insulators,
which manifest in the band structure of the material as a Dirac cone in the bulk band
gap.

We now look to topological insulator nanostructures, whose electronic structure and
novel interactions with light form the basis of the research topics covered in this thesis. The
nanoscale (1-100 nm, where nm = 10−9 m) is a length-scale at which a structure may be
made up of only a few thousand or even hundred atoms. In this limit, the number of atoms
participating in the surface state dynamics can be comparatively large in comparison to the
total number of atoms, leading to an enhancement of surface state contributions to electronic
and optical properties. This makes the nanoscale an ideal regime in which to study the
properties of topological insulators, and an exciting playground for new applications and
technologies [1, 10].

In particular, it has been found in various studies that in small TI nanostructures, quantum
confinement of states on the surface results in the discretization of the Dirac cone,
with discrete energy level spacing a function of nanostructure dimensions. This phenomenon
has already been described for nanospheres [35], and nanowires [34, 182], with foundational
experimental realisations and theoretical proposals for applications [5, 6, 120, 183–186].
Very recent work has studied the transport properties of a TI nanodisk, modelled as two
circular surfaces coupled via a tunneling term [187]. In this chapter, I extend this theory to
general spheroidal TI nanoparticles. I use this model to recover the surface states and
energy levels for the nanosphere [35] and nanowire [34]. I also present a novel numerical
study of the general nanospheroid, including results for the finite nanocigar2, the finite
nanodisk and the ideal, flat nanodisk.

This work gives a more complete view of topological insulator nanostructures, as the
previous results are now described within a single framework. As will be discussed in
Chapter 6, the growth of equiaxial nanoparticles (such as nanospheres) is experimentally

1There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics was a lecture
given by Feynman in 1959, and later transcribed to be published in the Caltech magazine [181]. Although
this lecture is said to have had little influence on the birth of the field of nanotechnology, it is often cited as
evidence that the idea of miniaturisation and nanoscale technologies has long been dreamt about.

2I coin the term nanocigar to describe prolate nanospheroids, with geometry somewhere between
the nanosphere and the nanowire. Reference [188] describes this geometry as ‘needle-like’, rather than
‘cigar-like’.
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Figure 4.1: Finding surface states for TI nanostructures: Method for finding surface
states and energies of TI nanostructures, taken from Imura et al. [34, 35] (purple) and
extended to spheroidal coordinate systems, for the study of prolate and oblate spheroidal
nanoparticles (green).

challenging, and while it can be done successfully [6] it is difficult to control the sample
size. This poses a challenge when aiming to observe phenomena which are parameterized
by the nanostructure dimensions. TI islands (or nanoflakes) are much easier to grow to
high precision [189–192] and can be modelled as nanodisks. Finite-length TI nanowires
or pillars have received little attention, but can be theoretically modelled as nanocigars
(described in more detail in Section 4.2.3), and so the results of this work on non-spherical
systems may well prove to be important in the study of TI nanostructures.

For TI nanostructures with confined dimensions on the scale of nanometers, transitions
between surface states are of the order of terahertz (THz), the importance of which will be
covered in Chapters 5 and 6.

In order to arrive at the surface states and energies for a spheroidal TI nanoparticle,
we follow the same method as described by Imura et al.. [34, 35] (given schematically in
Figure 4.1), extended to spheroids. We begin with the bulk Hamiltonian for TI materials
discussed in Chapter 2, and by considering the confinement effects on the surface of
small, spheroidal particles we find an effective Dirac surface Hamiltonian and the resulting
surface states and energy levels. We start with prolate spheroids, and then show that by
repeating the process with oblate spheroids, the full range of spheroidal dimensions can
be covered.
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The results of this chapter are taken from the manuscript (in preparation to be submitted):

• Spheroidal topological insulator nanoparticles, Marie Rider, Vincenzo Gian-
nini, In preparation (2021) [3].

4.1 Prolate spheroidal TI nanoparticles

Prolate spheroids (see Figure 4.2) are the limiting case of an ellipsoid with symmetry about
one axis, such that the three principal semi-axes, R1 ≥ R2 ≥ R3, reduce to R1 ≥ R2 = R3.
Modelling a nanoparticle as a prolate spheroid allows us to study particles between the two
limiting cases of the nanosphere (R1 ≈ R2) and the nanowire (R1 � R2).

4.1.1 Bulk Hamiltonian

We begin with the bulk Hamiltonian for TI materials in the Bi2Se3 family (Equation 2.12)
which I repeat here for clarity.

Hbulk(k) = m(k)12 ⊗ σ3 +Akxσ1 ⊗ σ1 +Akyσ2 ⊗ σ1 +Akzσ3 ⊗ σ1, (4.1)

where m(k) = m0 + m1(k2
x + k2

y + k2
z) and σ1,σ2,σ3 are the Pauli matrices (given in

Appendix A.1). We will convert this system from Cartesian to prolate spheroidal
coordinates (σ, τ, ϕ), where

x = a
√

(σ2 − 1)(1− τ2)cosϕ,

y = a
√

(σ2 − 1)(1− τ2)sinϕ,

z = aστ,

(4.2)

where σ is real-valued ≥ 1 (and not to be confused with the Pauli matrices, σ1,σ2,σ3),
τ ∈ [−1, 1], ϕ ∈ [−π, π], and a is a constant of dimension [L]. The unit vectors τ̂ and ϕ̂ are
parallel to the surface of the particle, while σ̂ is perpendicular to the surface. Constant σ
gives a closed spheroidal surface and we define σ = σ0 to demarcate the particle surface
such that the particle is described by σ ≤ σ0. The surface is constrained by the equation

x2 + y2

a2(σ2
0 − 1)

+
z2

a2σ2
0

= 1, (4.3)

where we can identify R1 = aσ0 and R2 = a
√
σ2

0 − 1 as the semi-major and semi-minor
axes respectively (i.e. R1 ≥ R2), illustrated in Figure 4.2a. In the limit σ0 � 1 this reduces
to the equation of the surface of a sphere with radius R2 ≈ R1 = aσ0 (demonstrated in
Figure 4.2b), and the infinite nanowire (i.e. an infinitely long cigar) is given by σ0 → 1 with
length L = 2a and R = a

√
σ2

0 − 1. (see Figure 4.2c). For σ0 → 1 we have that R2 � R1,
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Figure 4.2: Prolate spheroidal nanoparticles: We describe our nanoparticles as prolate
spheroids. (a) Prolate spheroidal nanoparticle with surface given by σ = σ0 with semi-major
axis R1 = aσ0 (parallel to the z-axis) and semi-minor axis R2 = a

√
σ2

0 − 1, where R1 ≥ R2.
(b) The spherical limit with R1 ≈ R2, and (c) the limit of a nanowire, for which R1 � R2.

but we still use parameters which ensure that R2 ≥ 5 nm so that the TI bulk Hamiltonian
is still valid.

The momentum operator k = kxx̂+ kyŷ + kzẑ can be projected onto the prolate spheroidal
unit vectors, such that k = kσσ̂ + kτ τ̂ + kϕϕ̂, where

kσ = − i

hσ
∂σ, kτ = − i

hτ
∂τ and kϕ = − i

hϕ
∂ϕ, (4.4)

where I have introduced the scale factors

hσ = a

√
σ2 − τ2

σ2 − 1
, hτ = a

√
σ2 − τ2

1− τ2
, and hϕ = a

√
(σ2 − 1)(1− τ2). (4.5)

I give more details on this infrequently-used coordinate system in Appendix A.4. Rewriting
Equation 4.1 in prolate spheroidal coordinates (where some useful details on transforming
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from Cartesian to spheroidal coordinates are also given in Appendix A.4), we have that

Hbulk(k) = m0 12 ⊗ σ3

−m1 12 ⊗ σ3

[
1

h2
σ

∂2
σ +

2σ

a2(σ2 − τ2)
∂σ

]
+m1 12 ⊗ σ3

[
2τ

a2(σ2 − τ2)
∂τ −

1

h2
τ

∂2
τ −

1

h2
ϕ

∂2
ϕ

]
− iA σ3 ⊗ σ1

[
aτ

h2
σ

∂σ +
aσ

h2
τ

∂τ

]
− iA σ1 ⊗ σ1

[
aσ

hσhτ
cosϕ ∂σ −

aτ

hσhτ
cosϕ ∂τ −

sinϕ

hϕ
∂ϕ

]
− iA σ2 ⊗ σ1

[
aσ

hσhτ
sinϕ ∂σ −

aτ

hσhτ
sinϕ ∂τ +

cosϕ

hϕ
∂ϕ

]
.

(4.6)

We can now separate the Hamiltonian into components perpendicular (i.e. in the direction
of σ̂) and parallel (τ̂ and ϕ̂) to the surface, such that H = H⊥ + H‖, where

H⊥(k) = m0 12 ⊗ σ3 −m1 12 ⊗ σ3

[
1

h2
σ

∂2
σ +

2σ

a2(σ2 − τ2)
∂σ

]
− iA σ3 ⊗ σ1

[
aτ

h2
σ

∂σ

]
− iA σ1 ⊗ σ1

[
aσ

hσhτ
cosϕ ∂σ

]
− iAσ2 ⊗ σ1

[
aσ

hσhτ
sinϕ ∂σ

]
,

(4.7)

and

H‖(k) = −m1 12 ⊗ σ3

[
− 2τ

a2(σ2 − τ2)
∂τ +

1

h2
τ

∂2
τ +

1

h2
ϕ

∂2
ϕ

]
− iA σ3 ⊗ σ1

[
aσ

h2
τ

∂τ

]
− iA σ1 ⊗ σ1

[
− aτ

hσhτ
cosϕ ∂τ −

sinϕ

hϕ
∂ϕ

]
− iAσ2 ⊗ σ1

[
− aτ

hσhτ
sinϕ ∂τ +

cosϕ

hϕ
∂ϕ

]
.

(4.8)

We have chosen the definition H⊥ = Hbulk|kτ ,kϕ=0, such that H⊥(k) contains all constant
terms and ∂σ terms, and H‖(k) contains only ∂τ and ∂ϕ terms.

4.1.2 Surface state ansatz

Recalling that the surface of the nanospheroid is given by the condition σ = σ0, we introduce
an ansatz for the 4-component surface state of the form

|Φ(σ, τ, ϕ)〉 = eκa(σ−σ0)|u(σ0, τ, ϕ)〉, (4.9)

where κ is the decay constant describing the evanescence of the surface wave function
into the bulk. Generally we would not expect a separable solution for a spheroid (except
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in the limiting cases), hence we would expect u(σ, τ, ϕ). However due to the rapid decay
of the surface state into the bulk such that κ−1 � R1, R2, we assume u(σ0, τ, ϕ). This
is of course an approximation3, but allows us to write down a separable function. When
|Φ(σ, τ, ϕ)〉 is acted upon by H⊥, we find that

H⊥(κ) = m0 12 ⊗ σ3 −m1 12 ⊗ σ3

[
1

h2
σ

a2κ2 +
2σ

a(σ2 − τ2)
κ

]
− iA σ3 ⊗ σ1

[
a2τ

h2
σ

κ

]
− iA σ1 ⊗ σ1

[
a2σ

hσhτ
cosϕ κ

]
− iAσ2 ⊗ σ1

[
a2σ

hσhτ
sinϕ κ

]
.

(4.10)

The inverse of the decay constant, κ−1, is physically of the order of a few Å [193], and so
it is sensible to set σ = σ0 throughout the following calculations. This is only valid for
nanoparticles for which the limiting dimension R2 = a

√
σ2

0 − 1 � κ−1, but the same is
true for the bulk Hamiltonian, which will not accurately describe a particle less than a
few unit cells in size. In addition, in such a small particle the surface states would most
likely experience an overlap of their exponentially decaying tails from opposite sides of the
surface. For all of these reasons, we constrain ourselves to the study of nanostructures for
which a

√
σ2

0 − 1 ≥ 5 nm, and in general we stay much above this limit.

The component of the Hamiltonian perpendicular to the surface, H⊥ = Hbulk|kτ=0,kϕ=0,
sets the energy of the surface Γ-point, E⊥. In Chapter 2 we already chose ε(k) = 0 in order
to preserve particle-hole symmetry, which automatically gives the zero-energy condition
E⊥ = 0, such that the dispersion relation is symmetric with respect to E = 0. This leaves
us with the condition that

H⊥|Φ(σ0, τ, ϕ)〉 = E⊥|Φ(σ0, τ, ϕ)〉 = 0. (4.11)

Solving for the eigenvalues of H⊥ via |H⊥ − E⊥14| = 0, we find the condition that

E⊥ = ± 1

a (h0
σ)2 h0

τ

(
σ2

0 − τ2
)√f(κ), (4.12)

where

f(κ) = −a6
(
h0
τ

)2
κ2
(
σ2

0 − τ2
)2 (

A2τ2 − κ2m2
1

)
+
(
h0
σ

)4 (
h0
τ

)2 (
2κm1σ0 − am0

(
σ2

0 − τ2
))2

− a3
(
h0
σ

)2
κ2(σ2

0 − τ2)

[
a3A2σ2

0(σ2
0 − τ2)

− 2
(
h0
τ

)2
m1

(
2κm1σ0 − am0

(
σ2

0 − τ2
)) ]

.

(4.13)

3This approximation amounts to the assumption that u(σ, τ, ϕ) is a slow-varying function of σ, such
that ∂σu(σ, τ, ϕ)|σ=σ0 is negligible.
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To enforce the zero-energy condition E⊥ = 0, we must satisfy the condition that f(κ) = 0,
which results in four possible expressions for κ,

κq,s = − σ0

a(1− σ2
0)

+ q
√
gq(σ0, τ) +

sAh0
σ

2m1a
, (4.14)

where

gq(σ0, τ) =

(
h0
σ

)4
σ2

0

a6
(
σ2

0 − τ2
)2 +

A2

4m2
1

(
σ2

0

(
h0
σ

)2
(h0
τ )2 + τ2

)

+

(
h0
σ

)2
a2m1

(
m0 − q

Aσ0h
0
σ

a2(σ2
0 − τ2)

)
,

(4.15)

and q, s = −1, 1. Substituting these rather unwieldy expressions for κ into H⊥ and after
some algebraic gymnastics, we find two degenerate eigenstates of H⊥,

|+〉 =

√
1− τ
2

(
(1, i)

h0
τ

σ0

(
1

a
+

τ

h0
σ

)
eiϕ/2, (1, i) e−iϕ/2

)†
, (4.16)

|−〉 =

√
1 + τ

2

(
(1,−i) h

0
τ

σ0

(
1

a
− τ

h0
σ

)
eiϕ/2, (−1, i) e−iϕ/2

)†
. (4.17)

Any surface state can then be written as a linear combination of |+〉 and |−〉 with amplitude
specified by α+ and α− respectively, such that the 4-component surface state is given by

|Φ〉 = α+(τ, ϕ, σ0)|+〉+ α−(τ, ϕ, σ0)|−〉. (4.18)

Note that we are now using the surface scale factors4,

h0
σ = a

√
σ2

0 − τ2

σ2
0 − 1

, h0
τ = a

√
σ2

0 − τ2

1− τ2
, and h0

ϕ = a
√

(σ2
0 − 1)(1− τ2). (4.19)

Result: Prolate spheroidal TI nanostructure surface state form

The 4-component surface state has the form

|Φ〉 = α+(τ, ϕ, σ0)|+〉+ α−(τ, ϕ, σ0)|−〉 (4.20)

where

|+〉 =

√
1− τ
2

(
(1, i)

h0
τ

σ0

(
1

a
+

τ

h0
σ

)
eiϕ/2, (1, i) e−iϕ/2

)†
, (4.21)

|−〉 =

√
1 + τ

2

(
(1,−i) h

0
τ

σ0

(
1

a
− τ

h0
σ

)
eiϕ/2, (−1, i) e−iϕ/2

)†
. (4.22)

4i.e. we are using the scale factors with σ → σ0.
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4.1.3 Surface Hamiltonian

We now focus our attention on H‖, given in Equation 4.94, but repeated here for clarity,

H‖(k) = −m1 12 ⊗ σ3

[
− 2τ

a2(σ2
0 − τ2)

∂τ +
1

(h0
τ )2∂

2
τ +

1(
h0
ϕ

)2∂2
ϕ

]

− iA σ3 ⊗ σ1

[
aσ0

(h0
τ )2∂τ

]
− iA σ1 ⊗ σ1

[
− aτ

h0
σh

0
τ

cosϕ ∂τ −
sinϕ

h0
ϕ

∂ϕ

]
− iA σ2 ⊗ σ1

[
− aτ

h0
σh

0
τ

sinϕ ∂τ +
cosϕ

h0
ϕ

∂ϕ

]
.

(4.23)

We note that all terms scale either with m1/a
2σ2

0, A/aσ0 or A/a, where σ0 ≥ 1, and as
discussed in Chapter 2, m1 ∼1-10 eV Å2 and A ∼1-10 eV Å with exact values dependent on
material choice. As such, all terms with coefficient m1 can be considered negligible. This
greatly simplifies the form of H‖, and in particular removes all second derivatives, such
that

H‖(k) = − iA σ3 ⊗ σ1

[
aσ0

(h0
τ )2∂τ

]
− iA σ1 ⊗ σ1

[
− aτ

h0
σh

0
τ

cosϕ ∂τ −
sinϕ

h0
ϕ

∂ϕ

]
− iAσ2 ⊗ σ1

[
− aτ

h0
σh

0
τ

sinϕ ∂τ +
cosϕ

h0
ϕ

∂ϕ

]
.

(4.24)

Projecting this Hamiltonian onto the general surface state |Φ〉, we recover a 2× 2 effective
surface Hamiltonian, such that(

〈+|H‖|Φ〉
〈−|H‖|Φ〉

)
=

(
H++

surf H+−
surf

H−+
surf H−−surf

)(
α+

α−

)
= Hsurf |Ψ〉, (4.25)

where |Ψ〉 is the 2-component state

|Ψ〉 =

(
α+

α−

)
. (4.26)

This process is equivalent to employing degenerate perturbation theory, where H‖ is
considered a perturbation on H⊥, acting on the degenerate eigenstates of H⊥, |±〉. To find
the final, degeneracy-lifted spectrum of the total perturbed Hamiltonian we calculate the
matrix elements 〈±|H‖|±〉, 〈±|H‖|∓〉 and then diagonalise. After some arduous algebra
(with some helpful details given in Appendix B.7), we find that

H++
surf = H−−surf = 0, (4.27)

H+−
surf =

A

aσ0

√
1− τ2

[
(1− τ2)∂τ + i

h0
σ

a
∂ϕ +

1− τ
2
− a

2h0
σ

− τa2

2 (h0
τ )2

]
, (4.28)

H−+
surf =

A

aσ0

√
1− τ2

[
−(1− τ2)∂τ + i

h0
σ

a
∂ϕ +

1 + τ

2
− a

2h0
σ

+
τa2

2 (h0
τ )2

]
. (4.29)
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The surface states satisfy the eigenvalue equation

Hsurf |Ψ〉 = E|Ψ〉. (4.30)

As the spheroid has azimuthal symmetry5, we are able to separate variables, such that

|Ψm〉 = eimϕ

(
αm,+(τ)

αm,−(τ)

)
. (4.31)

As |Ψ〉 should transform as a vector, but |+〉 and |−〉 transform as spinors6, it can be
demonstrated that m (not to be confused with the mass parameters) is restricted to half-
integer values [35], such that m = ±1/2,±3/2, .... Physically, m is the projection of the
angular momentum on the z-axis. When applying Hsurf to this state, Equation 4.30 reduces
to the coupled, first-order ordinary differential equations (ODEs)

H+−
surfαm,+ = Emαm,−, (4.32)

H−+
surfαm,− = Emαm,+, (4.33)

such that

A

aσ0

√
1− τ2

[
(1− τ2)∂τ + i

h0
σ

a
∂ϕ +

1− τ
2
− τa2

2 (h0
τ )2 −

a

2h0
σ

]
αm,+ = Emαm,− (4.34)

A

aσ0

√
1− τ2

[
−(1− τ2)∂τ + i

h0
σ

a
∂ϕ +

1 + τ

2
− a

2h0
σ

+
τa2

2 (h0
τ )2

]
αm,− = Emαm,+. (4.35)

5Symmetry about the z-axis.
6A spinor, like a vector, is an element of a complex vector space. However, unlike a vector (which returns

to its original form under a 2π rotation), a spinor transforms to its negative under a 2π rotation, and must
be rotated 4π to return to its original form.
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Result: Prolate spheroidal TI nanostructure surface state Hamiltonian

The 2-component surface state |Ψm〉 = eimϕ(αm,+, αm,−)T , obeys the surface state
eigenvalue equation

Hsurf |Ψm〉 =

(
0 H+−

surf

H−+
surf 0

)
|Ψm〉 = Em|Ψm〉, (4.36)

where m = ±1/2,±3/2,±5/2, ... and

H++
surf = H−−surf = 0 (4.37)

H+−
surf =

A

aσ0

√
1− τ2

[
(1− τ2)∂τ −

mh0
σ

a
+

1− τ
2
− a

2h0
σ

− τa2

2 (h0
τ )2

]
(4.38)

H−+
surf =

A

aσ0

√
1− τ2

[
−(1− τ2)∂τ −

mh0
σ

a
+

1 + τ

2
− a

2h0
σ

+
τa2

2 (h0
τ )2

]
(4.39)

This eigenvalue problem can be written as two first-order coupled ODEs,

H+−
surfαm,+ = Emαm,− (4.40)

H−+
surfαm,− = Emαm,+. (4.41)

In the next section we will study the limiting cases in which there are analytical solutions
to these equations, and discuss the numerical solution for the general case.

4.2 General and limiting cases

We now examine the limiting cases of this result, in order to analytically solve for the final
surface states and energy levels of nanostructures of specific geometries. The limits to
consider for the prolate spheroid are (i) the nanosphere [35] and (ii) the nanowire [34].
We will also discuss the numerical solution of the general prolate spheroid.

4.2.1 The nanosphere

In order to recover the limit of the nanosphere, we set σ0 � 1. The surface of the particle
(from Equation 4.3) reduces to

x2 + y2 + z2 = R2, (4.42)
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where we have identified R = aσ0 as the radius of the nanosphere, as illustrated in
Figure 4.3a. The surface scale factors for the sphere reduce to

h0
σ = a, h0

τ =
R√

1− τ2
and h0

ϕ = R
√

1− τ2. (4.43)

A sanity check comes at the point of simplifying the H⊥ eigenstates, which reduce to the
eigenstates obtained by Imura et al. [35],

|+〉 =
1

2

(
(1, i)

√
1 + τeiϕ/2, (1, i)

√
1− τe−iϕ/2

)†
, (4.44)

|−〉 =
1

2

(
(1,−i)

√
1− τeiϕ/2, (−1, i)

√
1 + τe−iϕ/2

)†
. (4.45)

In this limit, the coupled first order equations describing the 2-component surface states
and their energy levels reduce to

A

R
√

1− τ2

[
(1− τ2)∂τ −m−

τ

2

]
αm+ = Emαm,−, (4.46)

A

R
√

1− τ2

[
−(1− τ2)∂τ −m+

τ

2

]
αm− = Emαm,+. (4.47)

We can combine these into a single, second-order equation[
(1− τ2)∂2

τ − 2τ∂τ −
m2 −mxτ + 1/4

1− τ2
+
R2

A2
E2
m −

1

4

]
αm,x = 0, (4.48)

where x = ± specifies the spin index in the subscript of αm,x. With the substitution

αm,x = (1− τ)
1
2
|m−x

2
|(1 + τ)

1
2
|m+x

2
|βm,x, (4.49)

and

Em =
A

R
λm, (4.50)

Equation 4.48 becomes[
(1− τ2)∂2

τ +

(
x
m

|m|
− (2|m|+ 2) τ

)
∂τ − |m| (|m|+ 1) + λ2

m −
1

2

]
βm,x = 0.

(4.51)

We can compare this to the standard form of the Jacobi differential equation (discussed in
Appendix A.5),

[
(1− τ2)∂2

τ + (ν − µ− (µ+ ν + 2)τ) ∂τ + n(n+ µ+ ν + 1)
]
Jµ,νn (τ), (4.52)
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Figure 4.3: The TI nanosphere: A TI nanosphere of radius R has surface states
described by three quantum numbers (s, n,m) where s = ±1, n = 0, 1, 2, 3..., m =
±1/2,±3/2,±5/2, ..., with their respective energy levels given by Es,n,m = sAR(n+|m|+1/2).

where Jµ,νn (τ) are the Jacobi polynomials and n = 0, 1, 2, 3, ...7. We identify

µ = |m| − x

2

m

|m|
=
∣∣m− x

2

∣∣, (4.53)

ν = |m|+ x

2

m

|m|
=
∣∣m+

x

2

∣∣. (4.54)

and thus

λ2
m = n(n+ µ+ ν + 1) + |m|(|m|+ 1) +

1

4
(4.55)

=

(
n+ |m|+ 1

2

)2

. (4.56)

Introducing the additional parameter s = ±1 for convenience to denote energy levels above
and below the Dirac point, we can write the surface state energies as

Es,n,m =
sA

R

(
n+ |m|+ 1

2

)
. (4.57)

7The values of n are necessarily positive integers to allow for the normalisation of the solutions, discussed
more in [35].
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We can then identify8

βm,+ = βn,m,+ = cn,m,+J
|m− 1

2
||m+ 1

2
|

n (τ) = Nn,mJ
|m− 1

2
||m+ 1

2
|

n (τ), (4.58)

βm,− = βn,m,− = cn,m,−J
|m+ 1

2
||m− 1

2
|

n (τ) = −s m
|m|

Nn,mJ
|m+ 1

2
||m− 1

2
|

n (τ), (4.59)

where Nn,m are normalisation constants described in Appendix A.5.

We can then finally recover the (normalised) surface states

|Ψs,n,m〉 =
eimϕ

2
√
πR

Nn,m

 (1− τ)
1
2
|m− 1

2
|(1 + τ)

1
2
|m+ 1

2
|J
|m− 1

2
||m+ 1

2
|

n (τ)

− sm
|m|(1− τ)

1
2
|m+ 1

2
|(1 + τ)

1
2
|m− 1

2
|J
|m+ 1

2
||m− 1

2
|

n (τ)

 . (4.60)

The surface states may be more easily compared to the result of Imura et al. [35] by rewriting
τ = cos(ϑ), thus demonstrating that we have arrived at the correct result for the limiting
case of a TI nanosphere. The discrete energy levels of the TI nanosphere are plotted in
Figure 4.3.

We can see that the energy levels have equal spacing (with no energy level at E = 0)
and degeneracy that grows linearly away from the Dirac point (increasing as 2,4,6,8...).
The energy levels inversely scale with R, and so for increasing R the energy level spacing
decreases. In the limit of a large particle such that R is large, a continuous Dirac cone is
recovered as expected.

Result: TI nanosphere surface states and energy levels

The surface states are given by

|Ψs,n,m〉 =
eimϕ

2
√
πR

Nn,mχs,n,m(ϑ), (4.61)

where

χs,n,m(ϑ) =

 (1− cosϑ)
1
2
|m− 1

2
|(1 + cosϑ)

1
2
|m+ 1

2
|J
|m− 1

2
||m+ 1

2
|

n (cosϑ)

− sm
|m|(1− cosϑ)

1
2
|m+ 1

2
|(1 + cosϑ)

1
2
|m− 1

2
|J
|m+ 1

2
||m− 1

2
|

n (cosϑ)

 , (4.62)

and the respective surface state energies are given by

Es,n,m =
sA

R

(
n+ |m|+ 1

2

)
, (4.63)

where s = ±1, n = 0, 1, 2, ..., m = ±1/2, 3/2, 5/2, ... [35]

8The additional factor of sm/|m| in front of βnm− can be deduced by the rather laborious task of
substituting Equations 4.58 and 4.59 into Equations 4.46 and 4.46.

75



4.2.2 The nanowire

For the nanowire we go to the opposite limit, σ0 → 1 (recalling that σ0 can take any value
≥ 1.) In this limit, the surface scale factors reduce to

h0
σ ∼

L2

R

√
1− τ2, h0

τ ∼ L, and h0
ϕ = R

√
1− τ2, (4.64)

where R = a
√
σ2

0 − 1 and L ∼ a. The eigenstates of H⊥ reduce to the same expressions as
found in [34], such that

|+〉 =

√
1− τ
2

eiϕ/2
(
(1, i) , (1, i) e−iϕ

)†
, (4.65)

|−〉 =

√
1 + τ

2
eiϕ/2

(
(1,−i) , (−1, i) e−iϕ

)†
. (4.66)

The components of the surface Hamiltonian reduce to

H++
surf = H−−surf = 0, (4.67)

H+−
surf = A

[√
1− τ2

L
∂τ −

m

R
+

1

L
√

1− τ2

(
1

2
− τ
)]

, (4.68)

H−+
surf = A

[
−
√

1− τ2

L
∂τ −

m

R
+

1

L
√

1− τ2

(
1

2
+ τ

)]
. (4.69)

For L� R, the particle approaches the dimensions of an infinite cylinder, where the surface
states are still confined in the azimuthal direction, but there is no longer confinement along
the z axis of the material, and it is sensible to transform to cylindrical coordinates where
τ2 � 1 and momentum in the z direction9 is given by

k = −i∂z = −i 1

L
∂τ . (4.70)

Appendix A.4 has more details on transforming between coordinate systems. The surface
Hamiltonian then reduces to

Hsurf = A

(
0 −ik − m

R

ik − m
R 0

)
. (4.71)

Diagonalizing this Hamiltonian, we find the energy eigenvalues to be

Es,k,m =
sA

R

√
(kR)2 +m2, (4.72)

where s = ±1, k is continuous and m = ±1/2, 3/2, 5/2, ... in agreement with Reference [34].
The energy levels for the TI nanowire are plotted in Figure 4.4. We can see a continuum

9Recall from Equation 4.2 that z = aστ , so in the limit of the nanowire, z = Lτ . The definition of k
then follows.
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Figure 4.4: The TI nanowire: A TI nanowire of radius R and length L where R � L
has surface states described by the quantum numbers s = ±1 and m = ±1/2, 3/2, 5/2, ...
and k, the momentum along the length of the wire, which is continuous. The dispersion

relation is given by Es,k,m = sAR

√
(kR)2 +m2.

of states as a function of k, but quantisation in the azimuthal direction is retained, and
parameterized by quantum number m. The greatest energy level spacing for a given pair of
m values is found at k = 0, and the levels get increasingly closer together for higher values
of k. The corresponding eigenstates are found to be

|Ψs,k,m〉 =
ei(kz+mϕ)

2
√
πRL

(
−s i

√
(kR)2+m2

kR−im
1

)
. (4.73)

Result: TI nanowire surface states and energy levels

The surface states are given by

|Ψs,k,m〉 =
ei(kz+mϕ)

2
√
πRL

(
−s i

√
(kR)2+m2

kR−im
1

)
(4.74)

and the respective surface state energies are given by

Es,k,m =
sA

R

√
(kR)2 +m2, (4.75)

where s = ±1, k is continuous and m = ±1/2, 3/2, 5/2, ... [34].
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4.2.3 General prolate spheroid

A full analytical solution to the general spheroid is unlikely, and so to study the full parameter
space of the prolate spheroid we continue with numerics using a finite-difference method
(given in more detail in Appendix C.1). We start with the two first order, coupled ODEs
with σ0 a real number ≥ 1,

H+−
surfαm+ = Emαm− (4.76)

H−+
surfαm− = Emαm+. (4.77)

where (from Equations 4.34 and 4.35),

H+−
surf =

A

aσ0

√
1− τ2

[
(1− τ2)∂τ −

mh0
σ

a
+

1− τ
2
− a

2h0
σ

− τa2

2 (h0
τ )2

]
, (4.78)

H−+
surf =

A

aσ0

√
1− τ2

[
−(1− τ2)∂τ −

mh0
σ

a
+

1 + τ

2
− a

2h0
σ

+
τa2

2 (h0
τ )2

]
. (4.79)

We combine this into a single, second order ODE, such that[
F (τ)∂2

τ +G(τ)∂τ +H(τ)− E2
m

]
αm+ = 0, (4.80)

where

F (τ) = − A2

a2σ2
0

(1− τ2) (4.81)

G(τ) =
A2

a2σ2
0

τ
(
1 + 2σ2

0 − 3τ2
)

σ2
0 − τ2

(4.82)

H(τ) =
A2

4a2σ2
0

((1− a
h0σ
− 2mh0σ

a

)2
− τ2

(
a2

(h0τ )2
− 1
)2

1− τ2
+

2

1 + τ
+

2

σ2
0 − τ2

+
4τ2(1− σ2

0)

(σ2
0 − τ2)2

+
2a3τ(1 + (1 + 2m)σ2

0)− 4a3(m+ 1)τ3

(h0
σ)3 (σ2

0 − 1)(1− τ2)

)
.

(4.83)

The general form for a second order ODE of this type is given in Appendix A.6. We
then solve this second-order equation using the finite-difference method for Em, and find
the energy levels of the prolate nanospheroid. The first three energy levels for values of
|m| ∈ (7/2, 9/2, 11/2) are plotted for all prolate nanospheroids in Figure 4.5, as a function
of R1/R2, the ratio of the particle axes.10 For R1 ≈ R2 (from σ0 � 1) the degenerate levels
of the nanosphere are recovered, and for R1 � R2 (equivalently σ0 → 1), we can see that
E ≈ A|m|/R, which are the energy levels of the nanowire for small |k|, as expected. The
energy level spectrum for a nanocigar of R1 = 1.15R2 (σ0 = 2) is plotted in Figure 4.6,
showing the lifting degeneracy of the energy levels as spherical symmetry is broken.

10The lowest values of |m| (i.e. |m| = 1/2, 3/2) require slightly more intensive numerics to solve, due to
the importance of contributions close to the poles of the particle (such that |τ | approaches 1), and so I
demonstrate the behaviour of the energy levels using larger values of |m| out of convenience.
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In Figure 4.7 we demonstrate the changing energy levels for prolate TI nanospheroids de-
formed in different ways. We plot the first three energy levels for |m| ∈ [7/2, 9/2, 11/2, 13/2],
for varying R1/R2 (by varying σ0). In Figure 4.7a, we take a nanosphere of volume
V = 4πR3/3 where R = 50 nm, and deform it into a long cigar while keeping the volume
constant. The volume of the general nanospheroid is given by

V =
4π

3
a3σ0(σ2

0 − 1) (4.84)

and so to keep volume constant we vary a as a function of σ0, such that

a =

(
3V

4πσ0(σ2
0 − 1)

) 1
3

. (4.85)

In Figure 4.7b we take a nanosphere of surface area S = 4πR2 for R = 50 nm and deform
it into a cigar whilst keeping the surface area constant. The surface area of a prolate
nanospheroid is given by

S = 2πa2

(
σ2

0 − 1 +
ησ0

√
σ2

0 − 1

sinη

)
, (4.86)

where η = arccos(R2/R1) = arccos(
√
σ2

0 − 1/σ0) and so we vary a, such that

a =

√√√√√ Sconst

2πa2

(
σ2

0 − 1 +
ησ0
√
σ2
0−1

sinη

) . (4.87)

In Figure 4.7c we keep the minor-radius, R2 = 50 nm, and thus the cross-section (πR2
2) of

the spheroid constant, whilst elongating along the z-axis to an infinitely long cigar. Under
these conditions a varies as

a =
R2√
σ2

0 − 1
. (4.88)

Finally, in Figure 4.7d we keep a constant, which is not a physically motivated condition
but which I include for completion. When a is constant, the variation of the energy levels
depends inversely on σ0, and so energies for the nanowire are very large, while those for
the nanosphere are small. For all deformations, the solution at R1 ≈ R2 recovers the
expected energy levels of the nanosphere, and R1 � R2 gives the nanowire. A geometry of
R1 ≈ 1.1R2 (σ0 ≈ 2.5 ) already approximately recovers the eigenvalues of the nanosphere.
In Figures 4.7a and 4.7b, in which the deformation is performed conserving volume and
surface area respectively, for each value of |m| we see lower minimum energies for the
sphere than for the wire. This is due to the surface state energies scaling inversely with the
semi-minor axis of the particle, which increases when deforming from the nanowire to the
nanosphere.
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Figure 4.5: Eigenvalues of the general prolate spheroidal nanoparticle: First
three energy levels of the nanospheroid for varying R1/R2 for each of the the |m| values
[7/2, 9/2, 11/2, 13/2] and normalised by A/R, where R is the minor-axis of the nanoparticle.
In the nanosphere limit R1 ≈ R2 (σ0 � 1), we see that we recover the energy levels
E = A

R

(
n+ |m|+ 1

2

)
, and in the limit of the nanowire (R1 � R2) σ0 → 1, E ≈ A|m|/R.
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Figure 4.6: Intermediate prolate spheroidal nanoparticle: Energy levels for a prolate
nanospheroid (nanocigar) with σ0 = 2, such that R1 ≈ 1.15R2. The degeneracy of the
energy levels is seen to have lifted as the spherical symmetry is broken.

4.3 From prolate to oblate spheroidal TI nanoparticles

To study spheroids for which R1 ≤ R2, we now repeat the same process for oblate
spheroids. Oblate spheroids allow us to study nanoparticles between the two limiting
cases of a sphere (R1 ≈ R2) and a disk (R1 � R2). As this process is almost entirely
repetition of the previous section, I aim to keep it brief and just give major results.

We use the non-standard11 oblate spheroidal coordinates (ζ, τ, ϕ), where

x = a
√

(1 + ζ2)(1− τ2)cosϕ,

y = a
√

(1 + ζ2)(1− τ2)sinϕ,

z = aζτ,

(4.89)

where ζ is a non-negative real number, τ ∈ [−1, 1], ϕ ∈ [−π, π], and a is a constant of
dimension [L]. The unit vectors τ̂ and ϕ̂ are parallel to the surface of the particle, while ζ̂
is perpendicular to the surface. Constant ζ gives a closed spheroidal surface and we define
ζ = ζ0 to demarcate the particle surface such that the particle is described by ζ ≤ ζ0. The

11Oblate spheroidal coordinates are usually denoted (ζ, ξ, ϕ), where ζ = sinhµ and ξ = sinν. I instead
use the equivalent system, (ζ, τ, ϕ) where τ = cos(ν) is the same variable defined for prolate coordinates.
This does not change much, but allows us to more nicely reduce to the spherical case in the limit ζ � 1.
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Figure 4.7: Deforming the TI prolate nanospheroid: First three energy levels for
m ∈ [7/2, 9/2, 11/2], under various constraints. (a) Energy levels of nanospheroid under
deformation (by varying R1/R2) but with constant volume, equal to that of a nanosphere
of R = 50 nm. (b) Energy levels of nanospheroid of constant surface area, with surface
area of that of a nanosphere of R=50 nm. (c) Deforming energy levels of a nanospheroid
with constant cross-section (retaining cross-section of a 50nm sphere) and changing length
(d) Energy levels keeping constant a = 1.
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axis R1 = aζ0 (parallel to the z-axis) and semi-major axis R2 = a

√
1 + ζ2

0 , where R1 ≤ R2.
(b) The spherical limit with R1 ≈ R2, and (c) the limit of a disk, for which R1 � R2.

surface is constrained by the equation

x2 + y2

a2(1 + ζ2
0 )

+
z2

a2ζ2
0

= 1, (4.90)

where R1 = aζ0 and R2 = a
√

1 + ζ2
0 are the semi-minor and semi-major axes respectively

(i.e. R1 ≤ R2), illustrated in Figure 4.8a. In the limit ζ2
0 � 1 this reduces to the equation

of the surface of a sphere with radius R2 ≈ R1 = aζ0 (demonstrated in Figure 4.8b), and
for ζ0 � 1, this reduces to the limit of a disk with radius R2 ≈ a and half-depth R1 = aζ0

(see Figure 4.8c). As for the prolate case, we constrain ourselves to R1, R2 ≥ 5 nm in order
that the TI bulk Hamiltonian is still valid. The momentum operator k = kxx̂ + kyŷ + kzẑ

can be projected onto the oblate spheroidal unit vectors, such that k = kζ ζ̂ + kτ τ̂ + kϕϕ̂,
where

kζ = − i

hζ
∂ζ , kτ = − i

hτ
∂τ and kϕ = − i

hϕ
∂ϕ, (4.91)

where I have introduced the scale factors

hζ = a

√
ζ2 + τ2

1 + ζ2
, hτ = a

√
ζ2 + τ2

1− τ2
, and hϕ = a

√
(1 + ζ2)(1− τ2), (4.92)

respectively. More details on the oblate coordinate system can be found in Appendix A.4.
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The bulk Hamiltonian in oblate coordinates, Hbulk = H⊥ + H‖ is given by

H⊥(k) = m0 12 ⊗ σ3 −m1 12 ⊗ σ3

[
1

h2
ζ

∂2
ζ +

2ζ

a2(ζ2 + τ2)
∂ζ

]

− iA σ3 ⊗ σ1
aτ

h2
ζ

∂ζ − iA σ1 ⊗ σ1
aζ

hζhτ
cosϕ ∂ζ

− iA σ2 ⊗ σ1
aζ

hζhτ
sinϕ ∂ζ ,

(4.93)

and

H‖(k) = −m1 12 ⊗ σ3

[
− 2τ

a2(ζ2 + τ2)
∂τ +

1

h2
τ

∂2

∂τ2
+

1

h2
ϕ

∂2
ϕ

]
− iA σ3 ⊗ σ1

aζ

h2
τ

∂τ + iA σ1 ⊗ σ1

[
aτ

hζhτ
cosϕ ∂τ +

sinϕ

hϕ
∂ϕ

]
+ iA σ2 ⊗ σ1

[
aτ

hζhτ
sinϕ ∂τ −

cosϕ

hϕ
∂ϕ

]
.

(4.94)

I choose an ansatz for the 4-component surface state of the form

|Φ(ζ, τ, ϕ)〉 = eκa(ζ−ζ0)|u(ζ0, τ, ϕ)〉, (4.95)

which when acted upon by H⊥ results in

H⊥(κ) = m0 12 ⊗ σ3 −m1

[
1

h2
ζ

κ2a2 +
2κζ

a(ζ2 + τ2)

]
12 ⊗ σ3

− iA κa2τ

h2
ζ

σ3 ⊗ σ1 − iA
κa2ζ

hζhτ
cosϕ σ1 ⊗ σ1 − iA

κa2ζ

hζhτ
sinϕ σ2 ⊗ σ1,

(4.96)

where κ is the decay constant describing the evanescence of the surface wave function
into the bulk. κ−1 is of the order of a few Å, and so we set ζ = ζ0 for the rest of these
calculations.

By enforcing that the Γ-point be at E = 0, we have the condition that

H⊥|Φ(ζ0, τ, ϕ)〉 = E⊥|Φ(ζ0, τ, ϕ)〉 = 0, (4.97)

and we find two degenerate eigenstates of H⊥,

|+〉 =

√
1− τ
2

(
(1, i)h0

τ

(
1

aζ0
+

τ

h0
ζζ

)
eiϕ/2, (1, i) e−iϕ/2

)†
, (4.98)

|−〉 =

√
1 + τ

2

(
(1,−i)h0

τ

(
1

aζ0
− τ

h0
ζζ0

)
eiϕ/2, (−1, i) e−iϕ/2

)†
, (4.99)

where any surface state can then be written as a linear combination of |+〉 and |−〉 with

84



amplitude specified by α+ and α− respectively, such that the 4-component surface state is
given by

|Φ〉 = α+(τ, ϕ, ζ0)|+〉+ α−(τ, ϕ, ζ0)|−〉. (4.100)

Result: Oblate spheroidal TI nanostructure surface state form

The 4-component surface state has the form

|Φ〉 = α+(τ, ϕ, ζ0)|+〉+ α−(τ, ϕ, ζ0)|−〉 (4.101)

where

|+〉 =

√
1− τ
2

(
(1, i) eiϕ/2

(
h0
τ

aζ0
+
τh0

τ

h0
ζζ0

)
, (1, i) e−iϕ/2

)†
, (4.102)

|−〉 =

√
1 + τ

2

(
(1,−i) eiϕ/2

(
h0
τ

aζ0
− τh0

τ

h0
ζζ0

)
, (−1, i) e−iϕ/2

)†
. (4.103)

We now focus our attention on H‖, given in Equation 4.94, but repeated here for clarity,

H‖(k) = −m1 12 ⊗ σ3

[
− 2τ

a2(ζ2
0 + τ2)

∂τ +
1

(h0
τ )2

∂2

∂τ2
+

1(
h0
ϕ

)2∂2
ϕ

]

− iA σ3 ⊗ σ1
aζ0

(h0
τ )2∂τ + iA σ1 ⊗ σ1

[
aτ

h0
ζh

0
τ

cosϕ ∂τ +
sinϕ

h0
ϕ

∂ϕ

]

+ iA σ2 ⊗ σ1

[
aτ

h0
ζhτ

sinϕ ∂τ −
cosϕ

h0
ϕ

∂ϕ

]
.

(4.104)

We note that all terms scale either with m1/(aζ0)2 or A/(aζ0), where, as discussed in
Chapter 2, m1 ∼1-10 eV Å2 and A ∼1-10 eV Å with exact values dependent on material
choice. Recalling the condition on system size in order for the bulk Hamiltonian and
surface state ansatz to hold, we work in the limit aζ0 �Å, and so all terms with coefficient
m1/(aζ0)2 can be considered negligible. This greatly simplifies the form of H‖, and in
particular removes all second derivatives, such that

H‖(k) = iA σ3 ⊗ σ1
aζ0

(h0
τ )2∂τ + iA σ1 ⊗ σ1

[
aτ

h0
ζh

0
τ

cosϕ ∂τ +
sinϕ

h0
ϕ

∂ϕ

]

+ iA σ2 ⊗ σ1

[
aτ

h0
ζhτ

sinϕ ∂τ −
cosϕ

h0
ϕ

∂ϕ

]
.

(4.105)

Projecting this Hamiltonian onto the general surface state |Φ〉, we recover a 2× 2 effective
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surface Hamiltonian, such that(
〈+|H‖|Φ〉
〈−|H‖|Φ〉

)
=

(
H++

surf H+−
surf

H−+
surf H−−surf

)(
α+

α−

)
= Hsurf |Ψ〉, (4.106)

where |Ψ〉 is the 2-component state

|Ψ〉 =

(
α+

α−

)
. (4.107)

We find that

H++
surf = H−−surf = 0, (4.108)

H+−
surf =

A

aζ0

√
1− τ2

[
(1− τ2)∂τ + i

h0
ζ

a
∂ϕ −

a

2h0
ζ

+
(1− τ)

2
+

a2τ

2 (h0
τ )2

]
(4.109)

H−+
surf =

A

aζ0

√
1− τ2

[
− (1− τ2)∂τ + i

h0
ζ

a
∂ϕ −

a

2h0
ζ

+
(1 + τ)

2
− a2τ

2 (h0
τ )2

]
(4.110)

This 2× 2 effective surface Hamiltonian is in the form of a Dirac Hamiltonian, that is the
Hamiltonian describing the dynamics of massless fermions and the surface states satisfy
the eigenvalue equation

Hsurf |Ψ〉 = E|Ψ〉. (4.111)

As the spheroid has azimuthal symmetry12, we are able to separate variables, such that

|Ψm〉 = eimϕ

(
αm,+(τ)

αm,−(τ)

)
, (4.112)

where m is restricted to half-integer values [35], such that m = ±1/2,±3/2, .... When
applying Hsurf to this state, Equation 4.111 reduces to the coupled, first-order ordinary
differential equations (ODEs)

A

aζ0

√
1− τ2

[
(1− τ2)∂τ −

mh0
ζ

a
− a

2h0
ζ

+
(1− τ)

2
+

a2τ

2 (h0
τ )2

]
αm,− = Emαm,+,

(4.113)

A

aζ0

√
1− τ2

[
− (1− τ2)∂τ −

mh0
ζ

a
− a

2h0
ζ

+
(1 + τ)

2
− a2τ

2 (h0
τ )2

]
αm,+ = Emαm,−..

(4.114)

In the next section we will study the limiting cases and discuss the solution for the general
case.

12Symmetry about the z-axis.
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Result: Oblate spheroidal TI nanostructure surface state Hamiltonian

The 2-component surface state |Ψm〉 = eimϕ(αm+, αm−)T , obeys the Dirac surface
state eigenvalue equation

Hsurf |Ψm〉 =

(
0 H+−

surf

H−+
surf 0

)
|Ψm〉 = λ

A

aζ0
|Ψm〉, (4.115)

where m = ±1/2,±3/2,±5/2, ... and

H+−
surf =

A

aζ0

√
1− τ2

[
(1− τ2)∂τ −

mh0
ζ

a
− a

2h0
ζ

+
(1− τ)

2
+

a2τ

2 (h0
τ )2

]
, (4.116)

H−+
surf =

A

aζ0

√
1− τ2

[
− (1− τ2)∂τ −

mh0
ζ

a
− a

2h0
ζ

+
(1 + τ)

2
− a2τ

2 (h0
τ )2

]
. (4.117)

This can be written as two first-order coupled ODEs,

H+−
surfαm,− = Emαm,+ (4.118)

H−+
surfαm,+ = Emαm,−. (4.119)

4.4 General and limiting cases

The limits to consider for the oblate spheroid are (i) the nanosphere, which was already
covered in some detail in Section 4.2.1 and (ii) the nanodisk. We will also discuss the
solution of the general oblate spheroid.

4.4.1 The nanosphere

In order to recover the limit of the nanosphere, we set ζ0 � 1. We identify R = aζ0. The
surface of the particle (from Equation 4.90) reduces to

x2 + y2 + z2 = R2, (4.120)

where we have identified R = aζ0 as the radius of the nanosphere, as illustrated in Figure 4.3a.
The reduced surface scale factors are given by

h0
ζ = a, h0

τ =
R√

1− τ2
, and h0

ϕ = R
√

1− τ2. (4.121)
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The first-order coupled equations then reduce to (neglecting 1/R3 terms)

A

R
√

1− τ2

[
(1− τ2)∂τ −m−

τ

2

]
αm,+ = Emαm,− (4.122)

A

R
√

1− τ2

[
−(1− τ2)∂τ −m+

τ

2

]
αm,− = Emαm,+, (4.123)

which is exactly the same form as recovered in Section 4.2.1, and so the calculation follows
identically from here. We thus arrive at the usual result for the nanosphere, where the
surface states are given by

|Ψs,n,m〉 =
eimϕ

2
√
πR

Nn,m

 (1− τ)
1
2
|m− 1

2
|(1 + τ)

1
2
|m+ 1

2
|J
|m− 1

2
||m+ 1

2
|

n (τ)

− sm
|m|(1− τ)

1
2
|m+ 1

2
|(1 + τ)

1
2
|m− 1

2
|J
|m+ 1

2
||m− 1

2
|

n (τ)

 , (4.124)

and their respective surface state energies are given by

Es,n,m =
sA

R

(
n+ |m|+ 1

2

)
. (4.125)

4.4.2 The nanodisk

Moving on to the limit ζ0 � 1, we find a nanodisk of radius R ≈ a and depth h ≈ 2aζ0. To
ensure confinement in the radial direction, we must physically restrict ourselves to R / 100

nm,13 and to ensure a true bulk we limit h ' 10 nm. This realistically sets the lower limit
of ζ0 ≈ 0.05. However, the mathematical limit of ζ0 � 1 can be taken to find the energy
levels for the ideal nanodisk and I include this result for completion. To retrieve the ideal
nanodisk limit, it is useful to note the reduced scale factors,

h0
ζ ≈ a|τ |, h0

τ ≈ a
|τ |√

1− τ2
and h0

ϕ ≈ a
√

1− τ2. (4.126)

We then find that the four component surface state,

|Φm〉 = eimϕ (αm+(τ, ζ0)|+〉+ αm−(τ, ζ0)|−〉) , (4.127)

is a linear combination of the H⊥ eigenstates,

|+〉 =

√
1− τ
2

(
(1, i) eiϕ/2

2R

h

(|τ |+ τ)√
1− τ2

, (1, i) e−iϕ/2
)†
, (4.128)

|−〉 =

√
1 + τ

2

(
(1,−i) eiϕ/2 2R

h

(|τ | − τ)√
1− τ2

, (−1, i) e−iϕ/2
)†
. (4.129)

The 2× 2 effective Hamiltonian,

13For radii greater than approximately 100 nm, there is no longer quantum confinement in the radial
direction and m is not considered a good quantum number.

88



-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5
-10

-8

-6

-4

-2

0

2

4

6

8

10

8
6
4
2

−2
−4
−6
−8

0

− 7
2 − 5

2 − 3
2 − 1

2
1
2

3
2

5
2

7
2

m

E s
,n,

m
[2A

/h]

10

−10

R

h ≪ R

Figure 4.9: The ideal TI nanodisk: The energy levels of an ideal TI nanodisk of radius
R and depth h, with aspect ratio � 1. This limit breaks the physically required conditions
of confinement in the radial direction and a finite bulk, but is given here for completion.
These energy levels are doubly degenerate, corresponding to sign(τ) = ±1, which relate to
the decoupled upper and lower surfaces of the disk.
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Hsurf

(
αm,+

αm,−

)
=

(
H++

surf H+−
surf

H−+
surf H−−surf

)(
αm,+

αm,−

)
= Em

(
αm,+

αm,−

)
, (4.130)

reduces to the coupled first-order equations

2A

h
√

1− τ2

[
− (1− τ2)∂τ −m|τ | −

1

2|τ |
+

(1 + τ)

2
− (1− τ2)

2τ

]
αm,+ = Emαm,−, (4.131)

2A

h
√

1− τ2

[
(1− τ2)∂τ −m|τ | −

1

2|τ |
+

(1− τ)

2
+

(1− τ2)

2τ

]
αm,− = Emαm,+. (4.132)

We can combine these into a single, second order equation for αm,x, where the subscript x
denotes the spin index and we rewrite the eigenvalues as Em = 2Aλm/h.[

F (τ)∂2
τ +G(τ)∂τ +Hx(τ)− E2

m

]
αm,x = 0, (4.133)

where

F (τ) = −(1− τ2), (4.134)

G(τ) = 3τ − 1

τ
, (4.135)

Hx(τ) =
1

4τ2(1− τ2)

[
2 + τ2

(
4(m2 − 1)τ2 − 2xτ + 5 + 4m

)
− 2 (τ − x) (2τ(mτ − x)− 1) sign(τ)

]
.

(4.136)

by substituting t = |τ | and b = sign(τ) such that τ = bt, we can rewrite the equation such
that [

F (t)∂2
t +G(t)∂t +Hx(t)− E2

m

]
αm,x = 0, (4.137)

where

F (t) = −(1− t2), (4.138)

G(t) = 3t− 1

t
, (4.139)

Hx(t) =
1

4t2(1− t2)

[
2− 2t+ 4(m2 − 1)t4 − 2bx

− 2t3(2m+ bx) + t2(5 + 4bx+ 4m(1 + bx))

]
.

(4.140)

In this form, we can notice that b and x always occur as a product, so we rewrite z = bx,
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where z = ±1. We can then rewrite the H(t) term as

Hz(t) =
1

4t2(1− t2)

[
2− 2t+ 4(m2 − 1)t4 − 2z

− 2t3(2m+ z) + t2(5 + 4z + 4m(1 + z))

]
.

(4.141)

Using a finite difference method (given in more detail in Appendix C.1), we plot the
resulting energy levels of the ideal TI nanodisk in Figure 4.9.

The fact that the degenerate eigenvalues correspond to z = xsign(τ) = ±1 (where x = ±1

and sign(τ) = ±1) presents a departure from the solutions for the sphere and the nanowire,
which rely only on the spin-index, x. Recalling that τ ∈ [−1, 1] relates to the polar angle
τ = cos(ν), this distinction pertains to the top and bottom surfaces of the disk. These two
surfaces have separate sets of energy levels, which intuitively makes sense as this system
should tend towards the expected behaviour of a thin film, in which surface states on the
top and bottom surfaces can be treated separately. It is interesting to note that the energy
eigenvalues of the ideal TI nanodisk appear to scale inversely with disk height, h, rather
than radius, R. This conclusion is a little misleading, as the two parameters are of course
related by the aspect ratio of the disk, h = 2ζ0R, where ζ0 � 1. The energy levels thus
also scale inversely with R. So, the continuous Dirac cone is recovered in the limit that
h and R become large with fixed ζ0. The limit of a 2D thin film is expected if h remains
small but R is large. In this limit, a gap at k = 0 is expected, ∆ ∼ 1/h2 [194].

4.4.3 General oblate spheroid

We now have successfully recovered the analytical limit of the nanosphere for ζ0 � 1 and
discussed the previously unknown limit of the ideal nanodisk for ζ0 � 1. We now undertake
a numerical study for oblate spheroids of arbitrary ζ0 using the same finite-difference
method used already (and again, given in more detail in Appendix C.1).

We recall that the two coupled first order differential equations to be solved are

A

aζ0

√
1− τ2

[
(1− τ2)∂τ −

mh0
ζ

a
− a

2h0
ζ

+
(1− τ)

2
+

a2τ

2 (h0
τ )2

]
αm− = Emαm+,

(4.142)

A

aζ0

√
1− τ2

[
− (1− τ2)∂τ −

mh0
ζ

a
− a

2h0
ζ

+
(1 + τ)

2
− a2τ

2 (h0
τ )2

]
αm+ = Emαm−.

(4.143)

In order to solve this set of coupled equations, we must again combine them into a single,
second-order differential equation. In doing so, we find the equation
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[
F (τ)∂2

τ +G(τ)∂τ +Hx(τ)− E2
m

]
αmx = 0, (4.144)

where

F (τ) = − A2

a2ζ2
0

(1− τ2), (4.145)

G(τ) =
A2

a2ζ2
0

τ

3− a2(
h0
ζ

)2

 , (4.146)

H(τ) =
A2

2a2ζ2
0

[aτx(a2 − 2
(
h0
ζ

)2
m

)
(
ζ2

0 + 1
) (
h0
ζ

)3 +
τ2
(
a2 −

(
h0
τ

)2)2

2 (h0
τ )4 (τ2 − 1)

+

2

(
h0ζm

a + a
2h0ζ
− 1

2

)2

1− τ2

−
2h0

ζmτx

a(1− τ2)
+

aτx

h0
ζ (τ2 − 1)

+
τ2

ζ2
0 + τ2

− a2

(h0
τ )2

−
2τ2

(
τ2 − 1

)(
ζ2

0 + τ2
)2 − τ(τ + x)

τ2 − 1
+ 1

]
.

(4.147)

We then solve this second-order equation numerically for Em, and I present the results
for varying ratio R1/R2 in Figure 4.10. I plot the first four positive energy levels (such
that s = +1) for values of the quantum number |m| ∈ [7/2, 9/2, 11/2, 13/2], normalised
by A/R1 = 2A/h, where h = 2R1 is the height of the spheroid. For R1 ≈ R2 (such
that ζ0 � 1), we see that the eigenvalues of the nanosphere are recovered, such that
E+,n,m = 2A(n+ |m|+ 1/2)/h, where h = 2R. For R1 � R2 (ζ0 � 1), such that the ratio
between the height and radius of the disk becomes vanishingly small, the limit of the ideal
nanodisk is recovered. The physical cutoff R1 ≈ 0.05R2 is highlighted (corresponding to
ζ0 = 0.05).

In Figure 4.11 I plot the eigenvalues of the finite disk at the physical cutoff ζ0 = 0.05, where
I use the values h = 10 nm and R = 100 nm. This is the largest ratio between R and h
before either confinement is lost in the radial direction, or the depth of the disk becomes
too thin for the bulk Hamiltonian to be valid. As this disk thickness the degeneracy of
the states corresponding to the upper and lower surface states has begun to lift, but the
limit of the ideal, flat disk gives a satisfactory approximation. This may allow for simplified
results in later calculations. As the thickness of the disk is increased, this approximation
should instead be replaced by the values obtained for a disk of the correct thickness.

In Figure 4.12 I summarise the results of this chapter by plotting the first three energy levels
for |m| ∈ [7/2, 9/2, 11/2, 13/2] for all geometries from the nanodisk to the nanowire as a
function of the spheroid aspect ratio, R1/R2. The energies in this plot are normalised with
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Figure 4.10: Eigenvalues of the general oblate nanospheroid: First four energy
levels of the nanospheroid for varying R1/R2, for the |m| values [7/2, 9/2, 11/2, 13/2] and
normalised by A/R1 = 2A/h, where R1 is the minor-axis of the spheroid or equivalently
h = 2R1, where h is the height of the spheroid. In the limit R1 ≈ R2 (ζ0 � 1) we recover the
limit of the sphere such that E = sAR(n+ |m|+ 1

2) and in the limit of the ideal, flat nanodisk
R1 � R2 (ζ0 � 1), we observe the onset of degeneracy relating to the two sets of degenerate
energy levels corresponding to the decoupled upper and lower surfaces off the disk. The
physical limit of a nanodisk with complete quantum confinement (R ≤ 100 nm)and a true
bulk (h = 2R1 ≥ 10 nm) is denoted with the dotted line at R1 = 0.05R2 (which corresponds
to ζ0 = 0.05).
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Figure 4.11: Finite nanodisk: Energy levels for the finite nanodisk, in which the disk
is assumed to be as flat as possible without losing the 3D bulk of the material (h = 10
nm) and the disk is as wide as possible before axial quantum confinement is relinquished
(R = 100 nm). These combined conditions give a minimum value of ζ0 = 0.05.

respect to A/R2, where for the oblate spheroid R2 is the semi-major axis (in comparison to
Figure 4.10 in which values are normalised with respect to A/R1), which accounts for the
large energy values when tending towards the limit of the ideal nanodisk. Now that we
have the full spectrum of possible energy levels for the nanospheroid, the next chapters will
be devoted to the study of the optical properties of nanostructures and their applications.
For mathematical simplicity we use a spherical TINP for all applications in Chapters 5 and
6, but with these new electronic structure calculations all results in the following chapters
could be extended to systems of any spheroidal geometry.
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Figure 4.12: TI spheroidal nanoparticles: Energy levels, normalised by A/R2, for all
cases from the nanodisk to the nanowire as a function of their aspect ratio, R1/R2, where
R1/R2 ≤ 1 for the oblate spheroid, and R1/R2 ≥ 1 for the prolate spheroid. The prolate and
oblate spheroids meet at the shared limit of the nanosphere, R1 = R2. At the limit R1 = R2

we recover the nanosphere energy levels E+,n,m = A(n + |m| + 1/2)/R2. For the limit
R1 � R2 we recover the analytical nanowire energy levels for small |k|, E+,m ≈ A|m|/R2,
and for R1 � R2 we recover the limit of the ideal nanodisk

.
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I finish this chapter with a quote from Absorption and Scattering of Light by Small Particles,
the seminal textbook by Bohren and Huffman [195].

" ...the reader who has painstakingly followed the derivation, and thereby acquired virtue
through suffering, may derive some comfort from the knowledge that it is relatively clear

sailing from here on."
- Craig Bohren

Strictly speaking Bohren was commenting on the cumbersome process of expanding the
electromagnetic field in spherical harmonics, but I think the sentiment is equally valid
for writing the Hamiltonian of a rhombohedral crystal lattice in ellipsoidal coordinates.
Mirroring Bohren’s optimism, now that we have the energy levels and wave functions of
the general nanospheroid, I feel that calculating their optical properties is mathematically
less taxing than the derivation of their electronic structure.
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5. TQDs as a THz Lasing Source

"When God said, ‘Let there be light’, he surely must have meant perfectly coherent light."
- Charles Townes1

This chapter is the first time in this thesis that we bring together the two main threads of
this work - topological electronic nanostructures and light. For mathematical simplicity
we work with the spherical topological quantum dot (TQD)2 (whose energy levels
and wave functions were described in Section 4.3), and study how the surface states of the
TQD can be coupled with THz light. These results could also naturally be extended to
non-spherical nanostructures, using the results from Chapter 4. This will be discussed in
the outlook of this thesis in Chapter 7.

Much like other types of quantum dots and atomic systems, the discrete energy levels
of the TQD make it a natural system for controlled interactions with light. TQDs have
energy levels separated by THz frequencies, making them a potential route to THz lasing.
Success has been found in other THz systems, such as molecular gases [196] and topological
insulator quantum dots (TIQDs) [118] pumped with an infrared (IR) source, although as I
will demonstrate, TQDs can be pumped with THz frequency light. This feature, alongside
the robustness of the TQD states and their unusual spin-momentum locking make for a
novel implementation. As well as adding another tool to the tool-box of THz lasing, they
could also find use in other technological applications [120, 197].

I derive the results needed to demonstrate that a spherical TQD can lase in an open cavity
at T = 0 K. In order to demonstrate this we need to know the transition rates in a 1D
Fabry-Pérot cavity3, and also in 3D free space (to taken into account interactions out
of the cavity axis). A schematic is given in Figure 5.1a. While these results are certainly
not new, there are multiple routes to arrive at these results, and I have chosen to utilise
the concept of spectral densities (which I introduced in Section 3.4.3), giving a powerful
method of calculating transition rates in any geometry by simply knowing the form of
the time-dependent electric field in the system. The applications of this chapter rely heavily
on these results and in particular intermediate results which are not usually quoted in

1Charles Townes was one of the inventors of the maser, standing for microwave amplification by
stimulated emission of radiation, and was also the chairman of the NASA Science Advisory committee for
the Apollo lunar landing programme.

2Recall from Chapter 4 that topological quantum dot is an alternative name for topological insulator
nanoparticles, due to their analogy with semiconductor quantum dots and 2D topological insulator quantum
dots.

3This is an open cavity in 3D space, comprised of two parallel mirrors. By assuming photons emitted
out of the cavity axis are lost directly to free space, this geometry simplifies to a 1D cavity embedded in 3D
free space.
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Figure 5.1: TQD in a cavity: (a) TQD in an open, 1D Fabry-Pérot cavity, in which
photons interact with the cavity along the cavity axis, or with free space in all other
directions. An external pump can be implemented from outside the cavity. (b) The
dispersion relation of the topological surface states is usually well approximated as a linear
Dirac cone, however in a high Q cavity tuned to one of the TQD transitions near the Dirac
cone, small quadratic deviations will result in the suppression of transitions away from the
Dirac cone.

textbooks, hence why I felt these derivations deserved to be in this chapter rather than
introduced as background theory in Chapter 3. Excellent general references on quantum
electrodynamics (QED) and cQED are [149, 153].

I calculate the selection rules of the system, which describe the allowed transitions (both
interband and intraband) within the TQD surface states, in agreement with the existing
literature [120, 183]. I demonstrate that the allowed transitions have an angular dependence,
such that the orientation of incoming light affects which transitions are allowed, which is
important when modelling the system and provides an additional tool in the control of
topological states using light.

I demonstrate that when a TQD is placed in a cavity, higher order corrections to the
surface state energy levels become very important when considering intraband transitions
(see Figure 5.1b). The energy levels away from the Dirac-point become increasingly non-
equidistant in spacing, and so for a high quality cavity tuned to a specific frequency close
to the Dirac-point, transitions away from the Dirac-point become quickly suppressed. This
results in a closed scheme of energy levels, in which a conserved number of electrons can
be controlled and pumped within a small subset of energy levels.

I employ this set of closed energy levels to make a lasing scheme. The dynamics of
multiple electrons in the closed scheme must be considered, and so standard rate equations
will not capture the dynamics of the system as Pauli blocking4 is not taken into account.
I use Monte Carlo simulations to model the multi-fermionic dynamics of the system
when driven by an external, low power THz source. I demonstrate that a single TINP

4The phenomenon by which fermion particles such as electrons cannot transition to a state which is
already occupied.
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in an open 1D cavity will lase in the THz, by calculating the evolution of surface state
occupation, coherent photon number and gain.

One of the major technological distinctions between the TQD laser and other THz lasers is
that we do not pump between bulk bands (as done in molecular THz lasers and TIQD lasers),
but instead we employ transitions within the Dirac cone to both pump and lase. This is only
possible due to the unusual energy level configuration and selection rules of the TQD. An
important consequence of THz pumping is that the density of thermal, room temperature
photons at this frequency (as opposed to those present at optical and IR frequencies) is
high enough that, in principle, there would be enough to pump the system without a need
for an additional external pumping source. In order to achieve this, a 3D closed cavity will
be needed and so I derive these results in full. I discuss how harnessing thermal photons
in a 3D cavity would present a path towards finite-temperature THz lasing using
thermal photons as a pump. This results of this chapter form the manuscript:

• Proposal for THz lasing from a 3D topological quantum dot, Marie Rider,
Vincenzo Giannini, arXiv:2105.04316 (2021) [4].

5.1 TQDs interacting with light

Using the concept of spectral densities first introduced in Section 3.4.3, we will now
derive the transition rates between TQD surface states in free space and in an open 1D
cavity, where

d

dω
Γi→f,β,k =

2π

~2
Si,f,β,k(ω)δ(ω − ωi,f), (5.1)

taken from Equation 3.61 and repeated here for clarity. The transition rate Γi→f,β,k is
calculated via the spectral density Si,f,β,k, which describes the coupling of electronic states
|Ψi〉 and |Ψf〉, facilitated by photons in mode (β,k). While I apply the results of this section
to TQD states, these are general results and could be applied to any electronic system.

5.1.1 Photon-mediated transitions in free space

In free space (i.e. with no interesting boundary conditions or restrictions on the EM field),
the electric field is described by plane waves as in Equation 3.45. As the electric field
is steady-state (i.e. its Fourier decomposition has a finite number of terms), we are
interested in the power spectral density5, such that

Si,f,β,k(ω) = lim
T→∞

1

T

∣∣∣∣〈Ψf | ⊗ 〈n′β,k|H̃int
β,k(r, ω)|Ψi〉 ⊗ |nβ,k〉

∣∣∣∣2, (5.2)

5As opposed to the situation we will come across later in which the electric field is transient and the
energy spectral density must be employed instead.
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where

H̃int
β,k(r, ω) =

1√
2π

∫ T
2

−T
2

Hint
β,k(r, t)eiωtdt, (5.3)

and Hint
β,k is the paramagnetic Hamiltonian describing the strength and nature of photon-

mediated electronic transitions. There are initially nβ,k photons in mode (β,k), and n′β,k
after the transition. |Ψi〉 is the initial state of the TQD, and |Ψf〉 is the TQD state
after the transition. Using the explicit form of the Hamiltonian in the electric dipole
approximation (from Equation 3.59),

Hint
β,k(r, t) = −e

ωi,f

ωk
Eβ,k(r0, t) · r, (5.4)

we can write the spectral density as

Si,f,β,k(ω) = e2ωi,f

ωk
lim
T→∞

1

T

∣∣∣∣〈Ψf | ⊗ 〈n′β,k|Ẽβ,k(r0, ω) · r|Ψi〉 ⊗ |nβ,k〉
∣∣∣∣2. (5.5)

Specifically for processes in which the electronic transition is facilitated by the the ab-
sorption of a photon, such that |nβ,k〉 → |nβ,k − 1〉, the spectral density is given by

Sabs
i,f,β,k(ω) = e2ωi,f

ωk
lim
T→∞

1

T
|〈Ψf | ⊗ 〈nβ,k − 1|Ẽβ,k(r0, ω) · r|Ψi〉 ⊗ |nβ,k〉|2

=
~ωi,je

2

4πV ε0
nβ,k|〈Ψf |r · eβ|Ψi〉|2 lim

T→∞

1

T

∣∣∣∣ ∫ T
2

−T
2

dtei(ω−ωk)t

∣∣∣∣2, (5.6)

and thus the transition rate (from Equation 5.1) is given by

d

dω
Γabs

i→j,β,k =
ωi,je

2

2V ε0~
nβ,k|〈Ψf |r · eβ|Ψi〉|2 lim

T→∞

1

T

∣∣∣∣ ∫ T
2

−T
2

dtei(ω−ωk)t

∣∣∣∣2δ(ω − ωi,f). (5.7)

Integrating both sides,

Γabs
i→j,β,k =

ωi,je
2

2V ε0~
nβ,k|〈Ψf |r · eβ|Ψi〉|2 lim

T→∞

1

T

∣∣∣∣ ∫ T
2

−T
2

dtei(ωi,f−ωk)t

∣∣∣∣2, (5.8)

and then calculating the first time integral (integral given in Appendix A.7),

Γabs
i→j,β,k =

ωi,jπe
2

V ε0~
nβ,k|〈Ψf |r · eβ|Ψi〉|2δ(ωi,f − ωk) lim

T→∞

1

T

∫ T
2

−T
2

dtei(ωi,f−ωk)t. (5.9)

Note that total energy is conserved here. As the electronic structure absorbs a photon,
energy is taken from the EM field and the change in energy of the electronic system is
positive, such that Ef − Ei = ~ωk. If we wish to find the transition rate for |Ψi〉 → |Ψf〉
via all possible absorption events (i.e. via incoming light from any direction) with a given
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polarisation β, we have that

Γabs
i→j,β =

ωi,jπe
2

~V ε0

∑
k

nβ,k|〈Ψf |r · eβ|Ψi〉|2δ(ωi,f − ωk) lim
T→∞

1

T

∫ T
2

−T
2

dtei(ωi,f−ωk)t.

(5.10)

We use the trick that summing over k can be turned into an integral, (which is justified
when the sample space V is very large, such that the space occupied by one state in k-space,
(2π)3/V can be seen as an infinitesimal volume ∆kx∆ky∆kz → d3k). Summing over all
available states can be done with knowledge of the photonic density of states (DOS) (see
Section 3.7), or by simply calculating the integral explicitly, such that in 3D free space
(where space is isotropic),

∑
k

→ V

(2π)3

∫
V
d3k =

V

2π2

∫
V
dk k =

V

2π2c3

∫
V
dωk ω

2
k. (5.11)

Here we will use the explicit form of the integral, and so

Γabs
i→j,β =

e2ωi,j

2π~ε0c3

∫
V
dωk ω

2
knβ,k|〈Ψf |r · eβ|Ψi〉|2δ(ωi,f − ωk) lim

T→∞

1

T

∫ T
2

−T
2

dtei(ωi,f−ωk)t

=
e2

2π~ε0c3
ω3

i,fnβ,i,f |〈Ψf |r · eβ|Ψi〉|2 lim
T→∞

1

T

∫ T
2

−T
2

dt

=
e2

2π~ε0c3
ω3

i,fnβ,i,f |〈Ψf |r · eβ|Ψi〉|2,

(5.12)

where we have also assumed that the radiation is isotropic such that nβ,i,f = nβ(ωi,f). Using
that α = 1

4πε0
e2

~c and summing over both polarisations,

Γabs
i→j =

2αω3
i,f

c2

∑
β=1,2

nβ(ωi,f)|〈Ψf |r · eβ|Ψi〉|2. (5.13)

Similarly for photon emission, such that |nβ,k〉 → |nβ,k + 1〉, the transition rate will be
given by

d

dω
Γemis

i→f,β,k = lim
T→∞

4π2

T~2
|〈Ψf | ⊗ 〈nβ,k + 1|Hint(r, ωβ,k)|Ψi〉 ⊗ |nβ,k〉|2δ(ωi,f + ω), (5.14)

which results in

Γemis
i→j =

2αω3
f,i

c2

∑
β=1,2

(nβ(ωf,i) + 1) |〈Ψf |r · eβ|Ψi〉|2. (5.15)
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We can separate this into two contributions,

Γemis
i→j = Γstim

i→j + Γspon
i→j , (5.16)

where

Γstim
i→j =

2αω3
f,i

c2

∑
β=1,2

nβ(ωf,i)|〈Ψf |r · eβ|Ψi〉|2, (5.17)

Γspon
i→j =

2αω3
f,i

c2

∑
β=1,2

|〈Ψf |r · eβ|Ψi〉|2. (5.18)

For the spontaneous emission rate, we average over all possible polarisations (i.e. all
possible orientations of eβ)6, such that

Γspon
i→j =

2αω3
f,i

c2

∑
β=1,2

|〈Ψf |r · eβ|Ψi〉|2

=
4αω3

f,i

3c2
|〈Ψf |r|Ψi〉|2.

(5.19)

Note that none of these transition rates have a spatial dependence. This is a direct
consequence of the photonic density of states in free space being spatially invariant. If we
also assume that there is no underlying structure to the number of modes per polarisation
(i.e. there are equal numbers of photons with either polarisation), we can assume that
n1(ω) = n2(ω) = n(ω)/2, and we arrive at the final expressions for the transition rates. It
is worth noting that the form of the transition rates here are the same as when calculated
using Fermi’s golden rule, in which the transition rate is found to be proportional to the
photonic local density of states (LDOS) in the system. I cover this insight in more detail in
Appendix B.5.

Result: Transition rates in free space

Spontaneous emission Γspon
i→f =

4αω3
f,i

3c2
|〈Ψf |r|Ψi〉|2 (5.20)

Stimulated emission Γstim
i→f =

αω3
f,i

c2
n(ωf,i)

∑
β=1,2

|〈Ψf |r · eβ|Ψi〉|2 (5.21)

Stimulated absorption Γabs
i→f =

αω3
i,f

c2
n(ωi,f)

∑
β=1,2

|〈Ψf |r · eβ|Ψi〉|2 (5.22)

For a 50 nm radius nanoparticle of Bi2Te3, the smallest frequency is A/hR = ν = 0.97 THz
(where ω = 2πν) and the spontaneous emission rate for the intraband transition between e.g.
levels |+, 1, 1/2〉 and |+, 0,−1/2〉 is 6.7 · 103 s−1. Interband transitions are typically much

6Note that we only need to do this for spontaneous emission, in which a photon can be emitted with
any polarisation - for stimulated emission, the photon will have the same polarisation as the initial photon.
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Figure 5.2: Light in a cavity: (a) Schematic for 1D Fabry-Pérot cavity in free space.
The mirrors of the cavity have reflectivities R1 and R2 respectively. The spatial electric
field pattern is given for the first four modes of the cavity. At the centre of the cavity, only
odd modes are non-zero. (b) Discrete dispersion relation ω = mπc/L, for light in a cavity
of length L = 0.94 mm. (c) LDOS at position z = 0, normalised by the LDOS at frequency
ω = ωcav = 1 THz, for cavities with Q factor given by (i) 10, (ii) 102 and (iii) 104. Only
modes with odd m (solid line) contribute to the LDOS at z = 0, due to the structure of the
electric field. Contributions from even modes (dotted line) do not contribute to the LDOS
at z = 0, and thus transitions at these frequencies will be suppressed in the cavity axis.
However, shifting by a fraction of a wavelength along the cavity axis will give a different
set of transition rates.

faster, with the spontaneous transition from |+, 1,−1/2〉 to |−, 1, 1/2〉 given by 1.4 · 105 s−1.
This is much slower than comparable processes in semiconductor dots, whose spontaneous
emission rates are typically in the range 106–109 s−1 depending on their structure [198,
199].

5.1.2 Cavity QED: Transitions in a 1D Fabry-Pérot cavity

A 1D Fabry-Pérot cavity in its simplest form can be taken to be a pair of parallel,
imperfect cavity walls (mirrors) separated by a distance L along the z-axis (illustrated in
Figure 5.2a). The electric field E(z, t) inside the cavity will obey boundary conditions at
the mirrors, and is best described by a standing wave solution. The dispersion relation of
light inside this cavity thus takes quantised values, such that

ωm =
mπc

L
, (5.23)
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where m = 1, 2, .... Note that this is because kz = mπ
L . The fundamental mode of the cavity

ωcav = 2πc/λcav for L = λcav/2, so we can rewrite the dispersion relation as ωm = mωcav,
plotted in Figure 5.2b. Any mode not propagating directly in the cavity axis is considered
a free space mode7 and will interact via the free space transitions covered in Section 5.1.1.

The imperfect mirrors allow a time-dependent decay of the electric field out of the
cavity, quantified by the Q factor (Appendix B.8 goes into more detail on the Q factor
and its connection to the energy stored in the cavity), given by

Qm = τmωm, (5.24)

where τm is the photon-decay time (and conversely 1/τm is the cavity decay-rate
constant) of mode ωm. Note that we are defining a frequency-dependent Q factor. Often
for a particular cavity, Q is treated as a single constant as the cavity is either considered
single-mode, or the multiple modes of the cavity are close enough in frequency that the Q
factor will be practically the same over the entire operating range. However, by adding
in this mathematical formality we open ourselves to the potential of more flexible cavity
engineering. In practice, this can be achieved by constructing the cavity out of a material
whose reflectivity varies over the operating frequency of the material.8 By applying the
boundary conditions E(0, t) = E(L, t) = 0, the electric field inside the cavity can be found
to be

E(z, t) =
∑
β=1,2

∑
m

√
~ωm
2Lε0

sin
(mπz

L

) [
eβaβ,me

−iωmt − e∗βa
†
β,me

iωmt
]
e
− ωmt

2Qm , (5.25)

where it is important to note the exponential time-decay. There is now also a spatial-
dependence, which was not the case in free space. The spatial variance of the electric field
is illustrated in Figure 5.2. Due to the transient nature of the electric-field in this setup,
we work with the energy spectral density of the field, given by

Si,f,β,m(ω) =
1

τm

∣∣∣∣〈Ψf | ⊗ 〈n′β,m|H̃int
β,m(r, ω)|Ψi〉 ⊗ |nβ,m〉

∣∣∣∣2. (5.26)

The characteristic timescale of the system is τm (the photon-decay time), rather than T
(in the limit that T →∞) as in free-space. Substituting the electric dipole approximation

7This is of course a simplification. In reality, this system should be considered similar to a 2D waveguide
in which ω2

m,β =
(
mπc
L

)2
+ c2β2, where β2 = k2x + k2y.

8While this may seem like a theorist wilfully ignoring physical practicalities, recent advancements in
metamaterials make this type of cavity engineering possible - albeit technically challenging - for the THz
frequency range I focus on in this thesis.
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and looking specifically at the absorption process,

Sabs
i→f,β,m(ω) =

e2

τm

ωi,f

ωm
|〈Ψf | ⊗ 〈nβ,m − 1|r ·E(z0, ω)|Ψi〉 ⊗ |nβ,m〉|2

=
~ωi,fe

2

4πε0τmL
nβ,msin2

(mπz0

L

)
|〈Ψf |r · eβ|Ψi〉|2

∣∣∣∣ ∫ ∞
−∞

dte
i(ω−ωm)t− ωmt

2Qm

∣∣∣∣2. (5.27)
Evaluating the time component (making use of the integral given in Appendix A.7) and
using that α = 1

4πε0
e2

~c ,

Sabs
i→f,β,m(ω) =

4α~2cωi,f

L
nβ,msin2

(mπz0

L

)
|〈Ψf |r · eβ|Ψi〉|2

Qmωm
ω2
m + 4Q2

m(ω − ωm)2
. (5.28)

The transition rate is then recovered as usual from

d

dω
Γi→f,β,m(ω) =

2π

~2
Si,f,β,m(ω)δ(ω − ωi,f). (5.29)

Integrating over ω, and summing over all modes and polarisations, we find for absorption
processes that

Γabs
i→f =

8παc

L

∑
β,m

nβ,msin2
(mπz0

L

)
|〈Ψf |r · eβ|Ψi〉|2

Qmωmωi,f

ω2
m + 4Q2

m(ωi,f − ωm)2
. (5.30)

Similarly for emission processes, we find that

Γemis
i→f =

8παc

L

∑
β,m

(nβ,m + 1) sin2
(mπz0

L

)
|〈Ψf |r · eβ|Ψi〉|2

Qmωmωi,f

ω2
m + 4Q2

m(ωf,i − ωm)2
, (5.31)

which can be separated into stimulated and spontaneous emissions, such that

Γstim
i→f =

8παc

L

∑
β,m

nβ,msin2
(mπz0

L

)
|〈Ψf |r · eβ|Ψi〉|2

Qmωmωi,f

ω2
m + 4Q2

m(ωf,i − ωm)2
, (5.32)

Γspon
i→f =

8παc

L

∑
β,m

sin2
(mπz0

L

)
|〈Ψf |r · eβ|Ψi〉|2

Qmωmωi,f

ω2
m + 4Q2

m(ωf,i − ωm)2
. (5.33)

Note that these processes only occur in the cavity axis, such that k = (0, 0, kz), and so
the polarisation basis vectors will only exist in the x-y plane. So, in order to find the
spontaneous emission rate we average over all polarisation vector orientations and sum the
two basis vectors,

Γspon
i→f =

8παc

L

∑
m

sin2
(mπz0

L

)
|〈Ψf |r|Ψi〉|2

Qmωmωi,f

ω2
m + 4Q2

m(ωf,i − ωm)2
(5.34)

When the radiation is exactly resonant with a particular cavity mode, ωi,f = ωm = mωc,
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this expression reduces to

Γspon
i→f = 8παc|〈Ψf |r|Ψi〉|2

∑
m

sin2
(mπz0

L

) Qm
L
. (5.35)

This can be compared to the spontaneous emission rate in 1D free space (derived in
Appendix B.9), and shows a maximum enhancement of

F1D =
2Qmλfree

πL
, (5.36)

which is the 1D Purcell factor. The enhancement is maximised for small cavity sizes (i.e.
small L) and high quality cavities (such that Q is large). Processes involving frequencies
which are off-resonant with the cavity modes will be greatly suppressed and the transition
rates will be much less than those in free space.

Result: Transition rates in an open 1D Fabry-Pérot cavity

Spontaneous emission in cavity axis

Γspon
i→f =

8παc

L

∑
m

sin2
(mπz0

L

)
|〈Ψf |r|Ψi〉|2

Qmωmωi,f

ω2
m + 4Q2

m(ωf,i − ωm)2
(5.37)

Stimulated emission in cavity axis

Γstim
i→f =

8παc

L

∑
β,m

nβ,msin2
(mπz0

L

)
|〈Ψf |r · eβ|Ψi〉|2

Qmωmωi,f

ω2
m + 4Q2

m(ωf,i − ωm)2
(5.38)

Stimulated absorption in cavity axis

Γabs
i→f =

8παc

L

∑
β,m

nβ,msin2
(mπz0

L

)
|〈Ψf |r · eβ|Ψi〉|2

Qmωmωi,f

ω2
m + 4Q2

m(ωi,f − ωm)2
(5.39)

Maximum Purcell factor in 1D

F1D =
2Qmλfree

πL
, (5.40)

The transition rates parallel to the cavity axis increase with small cavity length, L, and
large Q factor. The maximal transition rate will occur at a peak of the electric field density,
and when the electronic structure is exactly on resonance with a cavity mode such that
ωf,i = mωm. Transitions will be suppressed for frequencies which are far-off resonance with
the cavity, or at positions in the cavity where the spatial variance of the electric field is
minimised. A lower transition frequency ωf,i and increased matrix element can increase the
rate of transition. As with the free transition rates of Section 5.1.1, these transition rates
are in the same form as those found using Fermi’s golden rule as covered in Appendix B.5.
If the spatial dependence of the matrix element can be taken outside of the element, Fermi’s
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Figure 5.3: TQD state labels and energies: The states, |Ψs,n,m〉 = |s, n,m〉 and
corresponding energy levels are labelled for the first three energies above and below the
Dirac point.

golden rule tells us that the transition rate can be written in terms of the local density
of states (LDOS) of the system. In Figure 5.2c, for a cavity with fundamental frequency
ωcav, I give three examples of the LDOS at the centre of the cavity, normalised to the value
of the LDOS at ω = ωcav = 1 THz, while varying Q. We can see that for increasing Q,
the sharpness of the peaks in the LDOS increases until the Lorentzian shape of the peaks
becomes a delta distribution. Peaks only appear for odd multiples of ωcav (bold line), as
resonances at even multiples of ωcav give minima of the electric field density due to the
spatial variance. However, if we were to traverse the cavity axis we would see contributions
from both odd and even modes.

5.1.3 Selection rules

By inspecting the form of the transition rates both in free space and in a cavity, we can see
that for a particular polarisation of light described by eβ, the transition rate will only be
non-zero if the E1 matrix element, Vβ,i,f , is non-zero, where

Vβ,i,f = 〈Ψf |r · eβ|Ψi〉. (5.41)
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Δs = 0
Δ(n+ |m | ) = ± 1
Δm = 0, ± 1

Δs ≠ 0
Δ(n+ |m | ) = 0
Δm = 0, ± 1

Figure 5.4: TQD E1 selection rules: Allowed transitions from the state |−, 1, 1/2〉. For
light propagating from all directions, (a) intraband (purple) transitions couple energy levels
within the same section of the Dirac cone and (b) interband (green) transitions couple
levels above and below the Dirac point.

Calculating Vβ,i,f thus gives us the electric dipole (E1) selection rules.9 For the c-axis
of the material oriented along the z-axis, the explicit form of the TQD wave function
(Equation 4.61 given in Chapter 4 but repeated here for convenience) is given by

Ψs,n,m(ϑ, ϕ) = 〈ϑ, ϕ|Ψs,n,m〉 =
eimϕ

2
√
πR

Nn,mχs,n,m(ϑ), (5.42)

where

χs,n,m(ϑ) =

 (1− cosϑ)
1
2
|m− 1

2
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1
2
|m+ 1

2
|J
|m− 1

2
||m+ 1

2
|

n (cosϑ)

− sm
|m|(1− cosϑ)

1
2
|m+ 1

2
|(1 + cosϑ)

1
2
|m− 1

2
|J
|m+ 1

2
||m− 1

2
|

n (cosϑ)

 , (5.43)

s = ±1, n = 0, 1, 2, ... and m = ±1/2, 3/2, 5/2, ... In Figure 5.3 I give explicit examples of
the state labels and their corresponding energies, demonstrating the increasing degeneracy
of energy levels away from the Dirac point.

We recall from Section 3.2.3 that for light propagating in the direction

k̂ = (sinϑ0cosϕ0, sinϑ0sinϕ0, cosϑ0), (5.44)

where ϑ0 is the angle the light makes with the z-axis, the general polarisation vectors are
given by

e = aeiα1(cosϑ0cosϕ0, cosϑ0sinϕ0,−sinϑ0) +
√

1− a2eiα2(−sinϕ0, cosϕ0, 0). (5.45)

We can now calculate the selection rules for a transition i = (s, n,m) → f = (s′, n′,m′)

9This matrix element applies to free space and the 1D cavity. For the 3D cavity (covered in Section 5.3),
the matrix element depends on the spatial position of the TQD within the cavity. To include the 3D cavity
in these general results we can assume the TQD to be at the maximal field amplitude. This does not affect
the selection rules, but does affect the magnitude of the matrix-element and thus the final transition rate.
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mediated by light of any polarisation. A non-zero matrix element means that the transition
rate will be non-zero and thus that particular transition is allowed. A matrix-element of
value zero means that the transition is forbidden (at least for the perturbation order of E1.
The transition may be allowed at higher order, for example M1 or E2, but the transition
rate will be much slower. See Appendix B.4). In terms of (s, n,m), the selection rules are
given below.

Result: E1 selection rules

The general selection rules for the system are given by

∆s = 0, ∆(n+ |m|) = ±1, ∆m = 0,±1. (5.46)

∆s 6= 0, ∆(n+ |m|) = 0, ∆m = 0,±1. (5.47)

Both intra- (∆s = 0) and interband (∆s 6= 0) transitions are allowed. As an example, the
allowed transitions from state |−, 1, 1/2〉 are given in Figure 5.4. Figure 5.4a shows the
intraband transitions (purple arrows), where states within the same section of the Dirac
cone are coupled. Figure 5.4b illustrates the interband transitions (green arrows), in
which energy levels above and below the Dirac point are coupled.

The angular dependence of the matrix element and thus the selection rules is illustrated in
Figure 5.5. This angular dependence gives us another tool for controlling the interaction
between light and TQDs. For light approaching with an incidence angle ϑ0, (illustrated
in Figure 5.5a), transitions may be facilitated by left-handed light, right-handed light, or
both. For the special case of light propagating parallel to the c-axis of the material (which
we take to be the z-axis), the general selection results are reduced and only left-handed
or right-handed light will facilitate a transition (as depicted in Figure 5.5c, where the
polarisation vectors e1 and e2 are given by eLH and eRH when ϑ0 = 0, and become mixed
as ϑ0 increases). Defining the polarisation basis vectors such that ϕ0 = 0, we can write
down the reduced selection rules for incident light parallel to the z-axis.
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Figure 5.5: Angular dependence of E1 matrix element: (a) Schematic of incoming
light with momentum k, polar angle ϑ0, with the c-axis of the material aligned with the
z-axis. (b) Example of an interband transition |-, 0,−1

2〉 → |+, 0,
1
2〉. (c) The matrix

element Vi,f for the transition in (b) varies as the polar angle ϑ0 of incoming light varies.
For light travelling parallel to the z-axis, only εLH or εRH light will mediate a transition.
At intermediate angles, both polarisations may facilitate a transition.

Result: E1 selection rules for incoming light parallel to c-axis

Selection rules for light propagating along the z-axis such that k̂ = (0, 0, 1):
For left-hand (LH) polarised light such that eLH = 1√

2
(1, i, 0),

∆s = 0, ∆(n+ |m|) = ±1, ∆m = −1. (5.48)

∆s 6= 0, ∆(n+ |m|) = 0, ∆m = −1. (5.49)

For right-hand (RH) polarised light such that eRH = 1√
2
(1,−i, 0),

∆s = 0, ∆(n+ |m|) = ±1, ∆m = 1. (5.50)

∆s 6= 0, ∆(n+ |m|) = 0, ∆m = 1. (5.51)

As an example, the reduced selection rules for transitions from state |−, 1, 1/2〉 are given in
Figure 5.6. For the incident angle ϑ0 = 0,±π,±2π, ..., transitions will only be mediated by
left-hand or right-hand polarised light, while at intermediate angles both polarisations may
facilitate a transition.

110



a b
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Figure 5.6: TQD E1 selection rules: Allowed transitions from the state |−, 1, 1/2〉. For
light propagating parallel to the c-axis of the material, (a) intraband and (b) interband
transitions.

5.1.4 Higher order corrections

Close to the Γ-point the surface state dispersion relation is described well by k · p theory
and taken to be linear, and so the energy levels of the TQD surface states can be considered
equidistant in this region. This is the assumption we have used in Chapter 4, and which is
generally assumed in literature [35, 120, 183]. However, as states are considered increasingly
further from the Γ-point, this assumption breaks down. This is particularly important
when considering a TQD in a high quality cavity, as off-resonant transitions will be rapidly
suppressed, so it becomes imperative to take into account minor variations in transition
frequencies.

In order to take high-order corrections of the surface state dispersion relation into account,
we return to the continuum model (covered in Subsection 2.3.3) and include the next term
in the k · p expansion. The surface state dispersion relation becomes

Ec,v(|k|) = ±A|k|+A1|k|2, (5.52)

where A is 2.0 eVÅ for Bi2Te3 and 3.0 eVÅ for Bi2Se3 (as covered in Chapter 2), and for
Bi2Te3, A1 = 41.4 eVÅ2 and for Bi2Se3, A1 = 23.7 eVÅ2 [49]. The continuum surface-state
dispersion relation is plotted in Figure 5.7a for Bi2Te3, without correction (E(0)

c,v (|k|)) and
with correction (Ec,v(|k|)). The linear nature of the Dirac cone clearly breaks down away
from the Γ-point.

On confinement of the surface states, |k| ∼ 1/R and so the correction is proportional to
1/R2. For a Bi2Te3 TQD of R = 30 nm, without the correction all nearest-level transitions
occur with frequency ν(0) = 1.61 THz (asides from the transition coupling levels directly
above and below the Γ-point, which couples at frequency 2ν(0)). When taking the correction
into account, transition frequencies in both the valence and conduction band rapidly become
off-resonant with the first transition in each band. The first and second transition energies in
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Figure 5.7: k.p breakdown: (a) Continuum band structure for Bi2Te3 with Dirac cone
seen in the band gap (=165 meV [45]). Band structure up to and including |k|2 terms (solid
black line) deviates from the linear k·p approximation (dotted black line) substantially away
from the Γ-point. (b) For a R = 30 nm nanoparticle, discretised energy levels are expected.
To first order (i.e. in the linear approximation), the transition frequency ν(0) = 1.61
THz. To second order (i.e. taking into account the |k|2 term) sequential transitions in
the conduction band rapidly supersede the first transition, which when including the |k|2
correction has a frequency of νc = 1.95 THz. The first valence band transition is νv = 1.28
THz. Transitions in the valence band rapidly decrease in frequency away from the Γ-point.
Interband transitions are unaffected by the second order correction due to cancellation of
the |k|2 terms.

the upper Dirac cone show a disparity of 11%. The first and third transition energies differ
by 23%, as shown in Figure 5.7b. Variation in frequency is more rapid in smaller particles,
and in materials for which A1 is large. This disparity can thus be reduced by considering
a TQD of larger radius, or by using a different material such as Bi2Se3. Examples of
transition frequencies with and without the second-order correction for varying particle
sizes and material are given in Table 5.1. It should be noted that interband transitions
are unaffected due to the cancellation of the second-order correction, so occur at even
multiples of ν(0).

TQDs have multiple important energy scales. In comparison to the band gap (∼ 0.1 eV, as in
Figure 5.7a), the intraband transitions of the surface states are roughly the same. However,
when placed in a high Q cavity (such as the 1D open cavity described in Section 5.1.2), the
variation of the transition frequencies becomes of major importance. If the cavity is tuned
to a single intraband frequency, for example νcav = νv, transitions between other energy
levels could be greatly suppressed. For a cavity with a lifetime on a similar timescale to
spontaneous emission of the TQD, Q = τωcav, where τ ≈ 10−3s for a R = 30 nm particle,
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Bi2Te3

R [nm] ν(0) [THz] νc [THz] νv [THz] No. transitions in Ec within 10% of νc

10 4.83 7.86 1.84 1: νc

20 2.41 3.18 1.67 1: νc

30 1.61 1.95 1.28 1: νc

50 0.97 1.09 0.85 2: (1, 1.07)νc

100 0.48 0.52 0.45 3: (1, 1.04, 1.08)νc

Bi2Se3

R [nm] ν(0) [THz] νc [THz] νv [THz] No. transitions in Ec within 10% of νc

10 7.24 9.00 5.55 1: νc

20 3.62 4.07 3.21 2: (1, 1.07)νc

30 2.41 2.62 2.23 3: (1, 1.05, 1.09)νc

50 1.48 1.52 1.39 4: (1, 1.03, 1.06, 1.09)νc

100 0.72 0.74 0.71 7: (1, 1.02, 1.03, 1.05, 1.06, 1.08, 1.09)νc

Table 5.1: Transition frequencies for TQDs: To first order, ν(0) = A/hR Hz, where R
nm is the nanoparticle radius and A is 2.0 eVÅ for Bi2Te3 and 3.0 eVÅ for Bi2Se3. Including
the second order term, the first transition frequency in each band is νc,v = A/hR±A1/hR

2

Hz, where A1 is 41.4 eVÅ2 for Bi2Te3 and 23.7 eVÅ2 for Bi2Se3.

so Q ≈ 109, which corresponds to an incredibly high quality cavity10. Recalling from
Section 5.1.2 that transition rates in a cavity scale as

Γi→f ∼
Qωcavωi,f

ω2
cav + 4Q2(ωi,f − ωcav)2

, (5.53)

for a frequency directly on resonance such that ωi,f = ωv = ωcav, we have that Γi→f ∼ Q.
For the next level in the valence band (for R = 30 nm, ω = 0.83 ωv = 0.83 ωcav), the
transition rate is drastically reduced, such that Γi→f ∼ 1/Q. Interband transitions, such as
ω = 2ω(0) will be similarly suppressed. It is clear that for a cavity of high Q factor, the
only modes coupled to the cavity will be those which are almost perfectly resonant. All
other transitions will be drastically suppressed in the cavity axis and considered negligible.
However, in an open cavity such as the one described in Subsection 5.1.2 these transitions
can still occur in all directions not directly parallel to the cavity axis via the free-space
transition rate11.

It is important to note that corrections to the surface state energy levels must be considered
when calculating transition frequencies in a high quality cavity, due to the high frequency-
sensitivity of the density of states and transition rates. However, we use the unperturbed

10This is an exceedingly large Q factor, owing to the unusual combination of a high transition frequency
and long timescale.

11In a closed 3D cavity such as the one described in Section 5.3.2, only transitions that are nearly-resonant
with a cavity mode will avoid suppression.
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surface states when calculating the matrix elements, as this correction to the transition
rates is very small [200].

5.2 Lasing TQD at zero temperature

"All models are wrong, but some are useful."
- George Box12

I now put together the information gathered in the previous sections to demonstrate lasing.
This model is not particularly physical, requiring zero temperature and simplistically
assuming that photonic interactions only occur either (i) in the 1D cavity axis or (ii) in
free space. However, it provides us with a good toy model with which to study the idea of
lasing with TQDs. A more realistic, finite temperature model will be discussed afterwards.

5.2.1 Setup

We place a single Bi2Te3 TQD in the centre of an open, 1D Fabry-Pérot cavity of length L
(illustrated in Figure 5.8a) with the material c-axis aligned with the cavity-axis and Fermi
level at EF = 0. We work at zero temperature, such that there are negligible ambient
photons. Thus, the only photons entering the model are those coming from the pump, and
those which are produced by the TQD.

The TQD is pumped using an interband transition, νpump = (E2
+−E2

−)/h = 4ν(0), and the
cavity is tuned to the first valence band transition, νlas = (E1

− − E2
−)/h, as illustrated in

Figure 5.8b. This is the lowest transition in the scheme. The arguments in Section 5.1.4
show that all other transitions will be suppressed in the cavity axis, however free-space
transitions can occur at any frequency away from the cavity axis. The cavity is tuned to the
desired lasing frequency by choosing L = aλlas/2 with a an integer and λlas = c/νlas. This
scheme can be made more general, by choosing to pump via any interband transition and
tuning the cavity to the lowest transition in the scheme, resulting in lasing in this transition
frequency. It is important to note here that multiple schemes give successful lasing,
and I present one option.

The relevant rates (assuming transitions in the cavity are on resonance such that ωf,i = bωlas

12George Box was a British statistician known for his work on time-series analysis and response surface
methodologies. The underlying concept of this aphorism predates Box, but it is generally attributed to him.
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Figure 5.8: Toy model lasing: (a) Schematic of a TQD in a 1D open Fabry-Pérot cavity
and allowed transitions. (b) Transitions involved in the lasing scheme.

for integer b) are given as follows:

Pump Γstim
i→f =

2αω3
f,i

3c2
n̄(ωf,i)|〈Ψf |r|Ψi〉|2 (5.54)

Lasing Γstim
i→f = 4παc

Q

L
n̄(ωf,i)

∑
β

|〈Ψf |r · eβ|Ψi〉|2 (5.55)

Spon. emission in axis Γspon
i→f = 8παc

Q

L
|〈Ψf |r|Ψi〉|2 (5.56)

Spon. emission out of axis Γspon
i→f =

4αω3
f,i

3c2
|〈Ψf |r|Ψi〉|2 (5.57)

where we have also assumed symmetry in photon polarisation, such that n1 = n2 = n̄/2.
Assuming a particle of fixed material, Bi2Te3, the physical variables we can manipulate are:
Q, R, L, and the number of photons per mode at the pump frequency.

For a particle with R = 30 nm, the lasing frequency will be νlas = 1.28 THz, and the pump
will be at νpump = 6.44 THz. We may choose Q and L. While we have a seemingly large
parameter space to play with, we have an important physical restriction. As covered in
Chapter 3, in order to achieve lasing we rely on a hierarchy in rates, in which a non-radiative
transition which is much faster than other transitions in the system is used to close the
lasing scheme. In our system, we use free-space spontaneous decay instead. This rate is
fundamentally capped, relying only on the frequency of the light emitted. So, all other
transitions must be tuned to be slower than this rate. This fixes the timescale of our system
and corresponding lasing rates. Q and L must be chosen accordingly.

We must also remember that the cavity itself is of paramount importance. In order for
sufficient feedback such that coherent photons can build up in the cavity and reach steady
state (rather than simply leaking out or leaving the cavity via free space spontaneous
emission), we must ensure that the Q factor of our cavity is high enough such that we have
sufficient feedback. This means that the cavity time-scale must be roughly commensurate
with the spontaneous decay rate out of the cavity by any mode. As discussed in Section 5.1.4,
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for a particle of R = 30 nm, spontaneous rates go roughly as 103 s−1, and so a commensurate
cavity time scale results in Q ∼ 109. We choose a cavity length L = 50λlas. For these
fixed values, the dynamics of the system are tuned only with the number of photons with
pumping frequency present, n̄pump = n̄ (ωpump).

5.2.2 System dynamics

In Section 3.5, we covered the general theory of lasing in an ensemble of single-electron,
three-level systems. We wrote down the rate equations and found the condition of relative
rates such that population inversion is achieved. We also included the feedback-effect of
the cavity which allows for a buildup of photons and consequently lasing, which can be
quantified by calculating gain in the cavity. While the principle of lasing using a topological
quantum dot is largely the same, there is a subtlety which must be considered. We must
take into account that multiple electrons will be active in the scheme, and fermionic
occupation rules (and thus Pauli-blocking) must be included in the dynamics. This
drastically changes the methods available to us when studying this system.

In this chapter I present the results of Monte Carlo simulations, which capture the
fermionic nature of this system using a probabilistic hopping method (with more details
of the Monte Carlo method given in Appendix C.2.). Electrons traverse the system of
energy levels according to the transition rates calculated in Section 5.1 but forbidding
double occupation of levels (thus fulfilling the necessary fermionic occupation rules), and
then averaging over many runs to obtain a statistical mean of surface state occupation
densities. We convert the transition rate between two surface states to a probability of
hopping within a discretised time interval

pi→j = Γi→jdt, (5.58)

with suitably small time step, dt. This versatile method allows us to model the time
evolution of the surface states when interacting with a cavity and pumped with an external
source, while easily enforcing Pauli blocking. This method also allows for the straightforward
calculation of time-dependent quantities such as gain and coherent photon number.

To perform a Monte Carlo simulation describing the evolution of this system (with the
parameters given in Section 5.2.1), we begin with a single Bi2Te3 TQD of R = 30 nm and
EF = 0, in the centre of a cavity (z = 0), with L = 50λlas. The TQD is irradiated with light
of frequency νpump = 6.44 THz and n̄pump = 1, with transition rate given by Equation 5.55.
A schematic of the allowed transitions in the scheme is given in Figure 5.9a. The electronic
state population evolves via the absorption and emissions of photons, and the evolution of
the normalised occupation of energy levels, N̄/Nmax, is given in Figure 5.9b. Steady state
is quickly achieved, with clear population inversion between levels E1

− and E2
−. Recalling

the concept of gain from Chapter 3, the gain for this multi-level lasing transition is given
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Ḡ
/G

th

Threshold

In . cav .Out . cav .

E2− E1−

E2+ E1+

0

40
30
20
10

Ph
oto

ns

Γ

Pump
E2+
E1+

E1−
E2−

Lasing

Decay
DecayEF = 0

2 10
t [ms]

0 4 6 8

d

0 2 10
t [ms]

0 4 6 8

2 10
t [ms]

0 4 6 8

ba

Γ

Figure 5.9: Evolution of toy model lasing system: For a TQD of R = 30 nm in a cavity
of length 50λv and τ = 10−3s, pumped with incident photons n̄pump = 1. (a) Schematic of
transitions involved in the lasing scheme. (b) Average state occupation of energy levels
in lasing scheme. Population inversion can be seen for lasing transition E1

− → E2
−. (c)

Average gain, normalised to the threshold value. The threshold value is exceeded nearly
immediately. (d) Photon dynamics, with number of coherent photons in the cavity building
up to a constant density and steady emission of coherent photons out of the cavity. Lasing
rate, Γ, given by the gradient of photon number leaving the cavity.

by

Ḡ =
∑
i<j

σj→i
(
N̄j − N̄i

)
δ(ωij − 2πνc), (5.59)

where Γj→i = cn̄i,jσj→i and N̄i is the average occupation of surface state i. Ḡ for n̄pump = 1

is plotted in Figure 5.9c. It is immediately positive, and nearly instantaneously above
threshold. Threshold gain is given by Gth = 1/τcavc, as internal losses are taken to be
negligible in this simulation.

It is assumed that the first spontaneous emission of frequency νlas = 1.28 THz occurs in
the cavity axis13. This photon is retained in the cavity long enough that it may trigger
stimulated emission in the cavity axis and coherent photons will begin to build up in the

13This is a reasonable assumption due to the large enhancement of photonic DOS in the cavity axis, such
that the spontaneous emission rate in the cavity is much more likely than spontaneous emission out of the
cavity, but this assumption is not strictly necessary.
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Figure 5.10: Threshold for toy model lasing: (a) Steady-state lasing rate (coherent
photons emitted from cavity per second) for a TQD with EF = 0 and R = 30 nm, and a
cavity of length 50λv and τ = 10−3 s., and varying n̄pump. Inset showing ultra-low pumping
regime 0 ≤ n̄pump ≤ 0.15, with a lasing threshold of ∼0.08. (b) Coherent photon number
inside (green) and outside (purple) the cavity plotted for (i) n̄pump = 0.05 which is below
the lasing threshold and (ii), n̄pump = 1 which is above lasing threshold.

cavity. The coherent photon dynamics for this system are given in Figure 5.9d. The number
of coherent photons in the cavity (teal line) slowly increases from 0 until a steady state is
achieved. Coherent photons are emitted from the cavity (purple line), at a constant rate.
The slope of this line gives the photon emission rate, Γ ∼ 5.7 · 103 s−1. The power of this
lasing can be calculated by assuming photons are emitted over an area commensurate with
the cross-section of the nanoparticle, such that P = Γhνlas/ATINP ∼ 1.7 · 10−3 W/m2. The
incoming power is approximately 1.2 W/m2. The power conversion (power in vs power
out) is roughly 0.14% efficiency. This may seem very low, but it should be remembered
that we are considering a single TQD. As will be discussed later, the power output and
thus efficiency increases dramatically with increased number of TQDs.

Displayed in Figure 5.10a is the dependence of lasing rate with varying n̄pump. Lasing
is found to occur for n̄pump ≥ 0.08 (see inset of Figure 5.10a). Below threshold, such as
n̄pump = 0.05 as demonstrated in Figure 5.10b i, coherent photons in the cavity do not
build up rapidly enough to compensate for photons being absorbed by the TQD or emitted
from the cavity and so the number of cavity photons decays to 0. Lasing does not occur.
Above threshold, such as for n̄pump = 1 (already discussed extensively, but included in
Figure 5.10b ii for completion), a critical number of coherent photons build up in the
cavity such that lasing can occur. At steady state, there is a constant number of coherent
photons in the cavity and coherent photons are emitted from the cavity at a constant rate.
Above the threshold value of n̄pump is a small range in which the lasing rate exponentially
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Figure 5.11: Thermal radiation: (a) Energy spectrum of photons at finite temperature
(b) Average mode occupation of photonic states at finite temperature.

increases, and then the lasing rate increases approximately linearly with increased n̄pump.
Competition between processes of different time-scales in the system (cavity emission rate,
spontaneous emission rate and stimulated emission rate at the cavity frequency) eventually
results in a slowing of the increase in lasing rate, and a maximum lasing rate of 104 s−1.

All results presented so far have been for a single TQD. For multiple TQDs interacting via
a single cavity mode (i.e. multiple TQDs aligned along the cavity axis), coherent photons
emitted from one TQD will be available to trigger stimulated emission events in other
TQDs. It is expected that the lasing rate will be amplified exponentially with increasing
number of TQDs. This will in turn exponentially increase the lasing power, and the overall
efficiency of the laser.

5.3 Finite temperature lasing

The toy model we have so far discussed gives proof of principle of lasing, using a 1D
open cavity at T = 0. While experimental setups can reach temperatures close to absolute
zero (or more simply can achieve temperatures at which ambient THz frequency photons
can be considered negligible), it would be a great triumph to find a system which can
successfully operate at room temperature. As will be discussed in this section, I find
that the number of thermal photons present at room temperature is commensurate with
the number of photons needed to pump the system, and so it may be possible to pump the
system with no additional, external pump.

I present a road map to modelling more realistic, finite temperature conditions. As the
lasing scheme discussed in the previous section operates at THz frequencies (both pump
and emission), I first give a brief overview of thermal photons, and discuss THz frequency
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photon density at room temperature. In order to control thermal photons, a fully quantised,
3D cavity would be needed and so I present the derivation of the transition rates in this
system in full. I then present a tentative setup and outline the steps that will be necessary
to realise this system.

5.3.1 Thermal photons

At finite temperature, a space in thermal equilibrium with its environment is filled with
black-body electromagnetic radiation [201], with energy spectrum given by

u(ω) = ~ωg(ω)f(ω), (5.60)

where ~ω is the energy of a single photon of angular frequency ω, g(ω) = ω2/c3π2 is the
photonic density of states in free space derived in Section 3.7, and fBE(ω) = 1/(e

~ω
kBT − 1)

is the Bose-Einstein distribution, discussed more in Appendix B.10. We can thus write the
energy spectrum as

u(ω) =
~

π2c3

ω3

e
~ω
kBT
−1
, (5.61)

where kB = 1.38× 10−23 m2 kg s−2 K−1 is the Boltzmann constant. The energy spectrum
is both angular frequency ω and temperature T dependent, as plotted in Figure 5.11a. The
average number of photons of a particular ω can be found by u(ω)/~ω, which includes
all polarisations. At ambient temperature (which we take to be ∼ 293 K) the number of
photons at THz frequencies is of order 1 as can be seen in Figure 5.11b.

5.3.2 Cavity QED: Transitions in a 3D Fabry-Pérot cavity

Unlike the open 1D cavity embedded in 3D space described previously in Section 5.1.2, we
now consider a fully closed, 3D cuboidal Fabry-Pérot cavity, with the electromagnetic
field discretised in all three axes (see Figure 5.12a). The dispersion relation inside this
cavity is given by

ωl,m,n = c

√(
lπ

Lx

)2

+

(
mπ

Ly

)2

+

(
nπ

Lz

)2

, (5.62)

where (l,m, n) can all take values 0, 1, 2, 3, ... but only one index can be 0 per mode for a
non-trivial electric field. Without loss of generality we take Lx ≤ Ly ≤ Lz, and V = LxLyLz

is the volume of the cavity. The allowed cavity frequencies for l+m+ n = 2, 3 are given in
Figure 5.12b. The 3D cavity (in particular the cuboidal cavity in which all three sides are
of different length) has a rich mode structure, making for a highly tunable platform. The
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electromagnetic field is given by

E(r, t) =
∑
β

∑
l,m,n

√
~ωl,m,n
2V ε0

El,m,n(r) ◦Rβ,l,m,n(t), (5.63)

where the symbol ◦ represents Hadamard multiplication14. The spatial variation of the
electric field, El,m,n(r) is found from the boundary conditions at the cavity walls, such that

El,m,n(r) =


cos
(
lπx
Lx

)
sin
(
mπy
Ly

)
sin
(
nπz
Lz

)
sin
(
lπx
Lx

)
cos
(
mπy
Ly

)
sin
(
nπz
Lz

)
sin
(
lπx
Lx

)
sin
(
mπy
Ly

)
cos
(
nπz
Lz

)
 , (5.64)

and the part of the electric-field containing the temporal component is given by

Rβ,l,m,n(t) =
(
eβaβ,l,m,ne

−iωl,m,nt − e∗βa
†
β,l,m,ne

iωl,m,nt
)
e
−
ωl,m,nt

2Ql,m,n . (5.65)

Examples of the electric-field spatial patterns are given in Figures 5.12c and d. Like the 1D
cavity, the 3D cavity supports a transient EM field and so to calculate transition rates
within the cavity we employ the energy spectral density,

Sabs
i→f,β,l,m,n(ω) =

e2

τl,m,n

ωi,f

ωl,m,n
|〈Ψf | ⊗ 〈nβ,l,m,n − 1|r ·Eβ,l,m,n(r0, ω)|Ψi〉 ⊗ |nβ,l,m,n〉|2.

(5.66)

We thus have that

Sabs
i→f,β,l,m,n(ω) =

e2~ωi,fnβ,l,m,n
4πV ε0τl,m,n

|〈Ψf |r · (El,m,n(r0) ◦ eβ) |Ψi〉|2
∣∣∣∣ ∫ ∞
−∞

dte
i(ωl,m,n−ω)t− t

2τ(ωl,m,n)

∣∣∣∣2
=

e2~
πV ε0

nβ,l,m,n|〈Ψf |r · (El,m,n(r0) ◦ eβ) |Ψi〉|2
Ql,m,nωl,m,nωi,f

ω2
l,m,n + 4Q3

l,m,n(ω − ωl,m,n)2
.

(5.67)

As usual we then find the transition rate from

d

dω
Γabs
i→f (ω) =

2π

~2

∑
β,l,m,n

Si→f,β,l,m,n(ω)δ(ω − ωf,i), (5.68)

and specifically for absorption processes, upon integration we find that

Γabs
i→f =

8πcα

V

∑
β,l,m,n

nβ,l,m,n|〈Ψf |r · (El,m,n(r0) ◦ eβ) |Ψi〉|2
Ql,m,nωl,m,nωi,f

ω2
l,m,n + 4Q3

l,m,n(ωi,f − ωl,m,n)2
.

(5.69)

14Hadamard multiplication is element-wise matrix multiplication such that (a1, a2, a3) ◦ (b1, b2, b3) =
(a1b1, a2b2, a3b3).
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Figure 5.12: Light in a 3D cavity: (a) Schematic for 3D Fabry-Pérot cavity with sides of
length Lx, Ly, Lz, where Lx < Ly < Lz. (b) Allowed cavity frequencies for l+m+n = 2, 3.
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Similarly for emission processes, we find that

Γstim
i→f =

8πcα

V

∑
β,l,m,n

nβ,l,m,n|〈Ψf |r · (El,m,n(r0) ◦ eβ) |Ψi〉|2
Ql,m,nωl,m,nωi,f

ω2
l,m,n + 4Q3

l,m,n(ωf,i − ωl,m,n)2

(5.70)

Γspon
i→f =

8πcα

V

∑
β,l,m,n

|〈Ψf |r · (El,m,n(r0) ◦ eβ) |Ψi〉|2
Ql,m,nωl,m,nωi,f

ω2
l,m,n + 4Q3

l,m,n(ωf,i − ωl,m,n)2
. (5.71)

The 3D Purcell factor is found by dividing the spontaneous emission rate in the cavity
by the spontaneous emission rate in 3D free space, such that

F =
Γspon

i→f,cavity

Γspon
i→f,free

=
6πc3

ω3
f,iV

∑
β,l,m,n

|〈Ψf |r · (El,m,n(r0) ◦ eβ) |Ψi〉|2

|〈Ψf |r|Ψi〉|2
Ql,m,nωl,m,nωi,f

ω2
l,m,n + 4Q3

l,m,n(ωf,i − ωl,m,n)2
,

(5.72)

where we have used the spontaneous emission rate in free space calculated in Section 5.1.1.
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While this result is incredibly useful, it does not look much like the famous, maximum
enhancement Purcell factor yet [172]. We make some simplifying assumptions - maximum
enhancement will come at the centre of the cavity, such that El,m,n(0) = 1. We also assume
that we are at perfect resonance with a cavity mode, such that ωf,i = ωl,m,n. Any deviation
from this resonance will decrease the transition rate and a large deviation will eventually
lead to suppression of the process entirely. We also assume that the electric dipole moment
is perfectly aligned with the electric field in the cavity. All these assumptions give that

F =
6πc3

ω3
f,i

∑
l,m,n

Ql,m,n
V

. (5.73)

For a single mode cavity (such that we only consider one term in the sum and rewrite
Q = Ql,n,m, and rewriting ωf,i in terms of λi,f , we recover the expected Purcell factor,

F =
3λ3

i,fQ

4π2V
. (5.74)

As with the 1D cavity, we can see that transition rates rely on a great many factors.
Transition rates increase with small cavity size, V and large Q factor. The maximal
transition rate will occur at a peak of the electric field density, and when the TQD is exactly
on resonance with a cavity mode such that ωf,i = ωl,m,n. A lower transition frequency ωf,i

and increased matrix element will also increase the rate of transition.

Note that for this system the spatial dependence of the electric field is inside the matrix
element. For most purposes it is preferable to assume that the electronic system is at a
field-maximum inside the cavity, to simplify calculations. This simplified form is what is
normally found in textbooks. However, this reduces the parameters which can be tuned
when engineering a system, so I keep it in my expression for the transition rates, and we
will see later that it can be an important and useful tool.

The expressions for transition rates in the 3D cavity cannot be written in the form of Fermi’s
golden rule, as the spatial dependence of the electric field cannot be taken outside of the
matrix element unless simplifications are made. The spatial dependence of the transition
rates will be a crucial tool in the success of finite T lasing in this system, making the
method of spectral densities necessary.
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Result: Transition rates in a closed 3D Fabry-Pérot cavity

Spontaneous emission

Γspon
i→f =

8πcα

V

∑
β,l,m,n

|〈Ψf |r · (El,m,n(r0) ◦ eβ) |Ψi〉|2...

×
Ql,m,nωl,m,nωi,f

ω2
l,m,n + 4Q3

l,m,n(ωf,i − ωl,m,n)2

(5.75)

Stimulated emission

Γstim
i→f =

8πcα

V

∑
β,l,m,n

nβ,l,m,n|〈Ψf |r · (El,m,n(r0) ◦ eβ) |Ψi〉|2...

×
Ql,m,nωl,m,nωi,f

ω2
l,m,n + 4Q3

l,m,n(ωf,i − ωl,m,n)2

(5.76)

Stimulated absorption

Γabs
i→f =

8πcα

V

∑
β,l,m,n

nβ,l,m,n|〈Ψf |r · (El,m,n(r0) ◦ eβ) |Ψi〉|2...

×
Ql,m,nωl,m,nωi,f

ω2
l,m,n + 4Q3

l,m,n(ωi,f − ωl,m,n)2

(5.77)

General Purcell factor

F =
6πc3

ω3
f,iV

∑
β,l,m,n

|〈Ψf |r · (El,m,n(r0) ◦ eβ) |Ψi〉|2

|〈Ψf |r|Ψi〉|2
...

×
Ql,m,nωl,m,nωi,f

ω2
l,m,n + 4Q3

l,m,n(ωf,i − ωl,m,n)2

(5.78)

Maximal enhancement Purcell factor

F =
3λ3

i,fQ

4π2V
(5.79)

5.3.3 Setup and outlook

Now that I have covered the concepts of thermal THz frequency photons and 3D cavities, I
now present a road map to room-temperature THz lasing. The frequencies of interest
in the four level scheme already proposed in Section 5.2 are 4ω(0), 2ω(0) ωc = ω(0) + δω(0)

and ωv = ω(0) − δω(0), where δω(0) is due to higher order corrections of the Dirac cone, as
described in Section 5.1.4.
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We can design a 3D cavity with sides of length

Lx =
√

2
πc

ω(0) + 2δω(0)
, Ly =

√
2
πc

ω(0)
, Lz =

√
2

πc

ω(0) − 2δω(0)
, (5.80)

which (from Equation 5.62) will support modes with frequencies

ωl,m,n =
ω(0)

√
2

√
l2 (1 + 2δ)2 +m2 + n2 (1− 2δ)2. (5.81)

For δ � 1,

ωl,m,n =
ω(0)

√
2

√
l2 +m2 + n2 + 4δ(l2 − n2). (5.82)

The cavity thus supports the modes needed for the lasing scheme, where ω4,0,4 = 4ω(0),
ω2,0,2 = 2ω(0), ω1,1,0 = ω(0) + δω(0) = ωc and ω0,1,1 = ω(0) − δω(0) = ωv. Modes with
frequencies ω(0) ± 2δω(0) are suppressed (as they are not resonant modes of the cavity),
and the modes with frequency 3ω(0) will not result in any E1 transition within TQD states.
The four energy levels thus form a closed scheme, decoupled from the rest of the Dirac cone.
The only photons in the system will be at these four frequencies.

The transition rates, as found in Section 5.3.2, can be tuned with mode-dependent Q factor,
Ql,m,n, and spatial position, r, such that the electric field density is modified as El,m,n(r).
In tuning these parameters, it should be possible to find a set of parameters which give the
correct conditions population inversion and resulting lasing can be achieved.

As we are now working at finite temperature, we can calculate the density of thermal
photons at each frequency of the scheme. We pay particular attention to the number of
available photons at the pumping frequency. The simulations at T = 0 described in this
chapter were conducted for a R = 30 nm Bi2Te3 TQD. For particles 15 ≤ R/nm ≤ 50,
the pump frequency will be 3.8− 12.9 THz. At room temperature, 0.14 ≤ n̄pump ≤ 1.17,
which is above the lasing threshold found for the proof-of-principle case. For the same
lasing scheme but using Bi2Se3 15 ≤ R/nm ≤ 50, the number of photons per mode at room
temperature at the pumping frequency is in the range 0.044 − 0.63, which again is well
above lasing threshold.

Of course, population inversion cannot be achieved for a system in thermal
equilibrium. Cavities with time-varying Q factors can be made with moving mirrors [202],
or time-varying metamaterials [203]. Time-varying Q factors (and thus time-varying
photonic LDOS) could avoid the system thermalising, making it possible to demonstrate
population inversion and consequent lasing with no pumping source other than thermal
photons. This is an exciting avenue of research, and I will revisit it in the outlook of
Chapter 7.
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6. Modifying Light with Topology

"In thinking about nanotechnology today, what’s most
important is understanding where it leads..."

- Eric Drexler1

In this chapter I discuss how the quantised topological surface states of topological insulator
nanostructures modify the bulk optical properties of the nanostructure, and how the
resulting effects can be used to manipulate the properties of light in the surrounding
environment. As with the work in Chapter 5, I focus on spherical TI nanoparticles for
mathematical simplicity, which also allows me to compare theoretical results with available
experimental data for equiaxial2 Bi2Te3 nanoparticles. All results given could naturally
be extended to non-spherical TI nanostructures, as discussed in Chapter 7. Understanding
and experimentally demonstrating how topological insulator nanostructures interact with
THz frequency light will be of paramount importance when it comes to considering how
these systems can be used in new nanoscale and THz technologies.

In Section 6.1 I introduce the Surface Topological Particle (SToP) mode, a new hybrid
light-matter mode3 which was predicted in 2016 [5] for a single, spherical Bi2Se3 nanoparticle.
I present an extended study describing a physically realisable system of multiple Bi2Te3

nanoparticles in suspension, with irregular sizes and shape. The model is then validated
with experimental data, presenting the first experimental observation of the SToP mode
and evidence of the discrete nature of the Dirac cone. This section is based on the paper:

• Experimental signature of a topological quantum dot, Marie Rider, Maria
Sokolikova, Stephen Hanham, Stefano Lupi, Peter Haynes, Derek Lee, Maddalena
Daniele, Mariangela Cestelli Guidi, Cecilia Mattevi, Vincenzo Giannini, Nanoscale
(2020) [6].

In Section 6.2 I discuss the effect of a spherical TINP on the photonic LDOS of the
surrounding environment. I find that the photonic LDOS is amplified by a factor up
to ∼ 109 relative to that in homogeneous free space at a frequency tunable with the TINP
material, size and Fermi level. This section is based on the unpublished manuscript:

• Manipulating photonic local density of states with topological insulator
nanostructures, Marie Rider, Vincenzo Giannini, In preparation (2021) [7].

1Eric Drexler is an engineer known for his seminal work on molecular nanotechnology and is author of
the book Nanosystems: Molecular machinery, manufacturing and computation [204].

2Equiaxial: Having axes of commensurate length.
3Technically a polariton mode, but this terminology is not necessary to understand the following work.
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The purpose of the work in this chapter is two-fold:

(i) We can exploit the optical properties of these systems to indirectly probe the topolog-
ical features of TI band structures and gain a better fundamental understanding
of topological light-matter interactions at the nanoscale (both theoretically and
experimentally).

(ii) The bulk optical properties of TI nanostructures and the photonic LDOS sur-
rounding the nanostructure are both drastically modified by the presence of the
topological surface states. Both of these phenomena present a novel path towards the
much-desired control of light at the nanoscale and new applications therefrom.

6.1 The SToP mode

We have extensively covered the transitions between discrete energy levels in the Dirac cone
of spherical TINPs in Chapter 5. For materials such as Bi2Te3 and Bi2Se3, these transitions
occur at frequencies commensurate with a subset of the bulk optical phonons of the
material first introduced in Section 2.3.4. The interference in scattering amplitudes of the
two types of excitation (i.e. the coupling of the surface states and the optical phonons) leads
to a strong Fano resonance4, presenting as an asymmetric line shape in the scattering
cross-section of the system. This new mode was first predicted in 2016 [5], and dubbed
the Surface Topological Particle (SToP) mode. This is a purely quantum mechanical
feature of the system, and the asymmetric profile of this resonance creates a point of
zero-absorption when the energy spacing of the surface states is matched exactly by the
incident light, meaning that the excitation of a single electron occupying a topological
surface state can shield the bulk from the absorption of incoming light.

Some nanostructures (such as nanoribbons and thin films [192, 205, 206]) can already
be reliably produced, but TINPs (such as spherical TINPs, whose surface to volume ratio is
maximal while maintaining a true 3D bulk) have so far proved more challenging and so their
experimental study has been limited. The identification and classification of modes in the
optical spectra of TI nanostructure samples has been a lively endeavour, oftentimes leading
to contradictory conclusions [82, 207–212]. Unexpected peaks observed with Raman and IR
spectroscopy5 have been attributed to multiple different origins, such as surface oxidation,
phonon confinement effects, unverified topological effects or simply left unclassified. This
work presents evidence of a new, purely topological contribution to the spectra of TINPs.

To study the SToP mode theoretically, I review how the surface states of a TINP contribute
to its surface charge density, and consequently how this charge density modifies the
absorption cross-section of the nanoparticle, comparing to that of a trivially insulating
particle. This theory was originally described for a single Bi2Se3 particle in vacuum [5],

4Fano resonances are ubiquitous within physics, and I give more details in Appendix B.11.
5A discussion of the differences between Raman and IR spectroscopy is given in Appendix B.2.
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Figure 6.1: Bi2Te3 bulk dielectric function: The real (purple) and imaginary (green)
components of Bi2Te3 bulk dielectric function ε‖(ν), for incident light parallel to the c-axis
using parameters fitted to data in reference [213], presented in Table 6.1. The positions
of the α and β phonon frequencies are annotated for both k‖c and k⊥c incoming light
(denoted α‖, β‖, α⊥, and β⊥ respectively).

but I refer to Bi2Te3 throughout this section in order to compare to experimental results
later on. I then extend the model to describe an array of nanoparticles of non-uniform size
suspended in a medium (mineral oil), and compare to experimental results. I also discuss
the effects of non-uniform geometry and particle orientation.

6.1.1 Dielectric function

In the theoretical treatment of a TINP irradiated with THz frequency light, we treat the
bulk behaviour classically with a bulk dielectric function and the surface states are
treated quantum mechanically. As briefly mentioned in Chapter 3, the bulk dielectric
function here is both dispersive (i.e. ε is a function of frequency, ν, rather than constant)
and anisotropic (such that the material responds differently to light travelling parallel
and perpendicular to the c-axis of the material). The bulk dielectric function of Bi2Te3

is a dyadic6 and to treat the system analytically we write ε(ν) as a diagonal matrix with
principal components [ε⊥(ν), ε⊥(ν), ε‖(ν)] and all other components equal to 0. ε‖(ν) gives
the dielectric function along the c-axis of the material, while ε⊥(ν) is the dielectric function
in both axes perpendicular to the c-axis. Each principal component is of the form

ε(ν) =
∑

j=α,β,f

ν2
p,j

ν2
0,j − ν2 − iγjν

, (6.1)

6See Appendix A.3 for a reminder on dyadics.
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νp,j (THz) ν0,j (THz) γj (THz)

α 21 1.56 0.18
β 4 2.85 0.2
f 11 0 0.24

Table 6.1: Parameters of ε‖(ν) for Bi2Te3: Calculated from experimental data in [213].
νp,j, ν0,j and γj denote the amplitude, resonance frequency and harmonic broadening
parameters for each mode.

which contains contributions from optical phonons labelled α and β, and free charge
carriers (denoted by f) arising from bulk defects. The α‖ and β‖ phonons correspond
respectively to the A1

1u and A2
1u phonons described in Section 2.3.4 and depicted in Figure 2.7.

The α⊥ phonon and β⊥ phonons correspond to the E1
u and E2

u modes.

The parameters (given in Table 6.1) for ε‖(ν) have been determined by fitting to experimental
data for samples irradiated with light propagating along the c-axis of the material [213],
and measured at 300 K. The real and imaginary parts of ε‖(ν) are plotted in Figure 6.1a
with purple and green lines respectively. To present a transparent analysis, the following
theoretical study only considers the contribution to the TINP optical response from ε‖(ν).
We also expect a contribution from ε⊥(ν) (and so should average over all three material
axes), but due to limited reliable ε⊥(ν) data, we present theoretical results derived using only
ε‖(ν). Considering the material isotropic in this manner does not affect the conclusions of
this work. However for reference, the plot of ε‖(ν) in Figure 6.1 is annotated with vertical
lines denoting the α and β phonon frequencies for both ε‖(ν) and ε⊥(ν) (values taken
from [78]). For ε‖(ν), the resonance frequencies for the α and β phonons are 1.56 THz
and 2.85 THz respectively (as given in Table 6.1), while for ε⊥(ν), the frequencies used are
2.82 THz and 3.60 THz respectively.

6.1.2 Absorption cross-section for a topological insulator nanoparticle

In this section I review the derivation of the absorption cross-section of a topological
insulator nanoparticle, as given in Reference [5] but modified to include a background
medium (such as mineral oil). I show how the surface charge density of the nanoparticle is
modified due to the excitation of a surface state, and from there find the absorption cross-
section of the nanoparticle. I work in the limit in which the particle radius R is much smaller
than the wavelength of incoming light R� λ, and so the derivation begins by treating light
in the electric dipole approximation as usual, such that system experiences a time-
varying perturbation to an otherwise time-invariant potential, Φin(r)→ Φin(r) + δΦ(r, t),
where

δΦ(r, t) = E(t) · r = Re
[
Brsinϑ

(
ei(ϕ−2πνt) + ei(ϕ+2πνt)

)]
, (6.2)

130



where B is the strength of the potential inside the bulk of the TINP. Considering a system
initially in state |Ψi〉 in the presence of a time-varying potential, the wave function of the
surface state becomes

Ψ(r) = Ψi(r) + δΨ(r, t). (6.3)

The perturbed part, δΨ(r, t), can be expanded in terms of unperturbed wavefunctions, such
that

δΨ(r, t) =
∑
n 6=i

cn(t)Ψn(r)e−i2πνn,it, (6.4)

where hνn,i = En − Ei. Due to the rapid decay of the surface state into the bulk, we can
assume r = R, and as δV (r, t) is a harmonic perturbation with frequency ω = 2πν, the
coefficients of the expansion are to first order given by (see Appendix A.8 for more details)

c(1)
n = − i

~

∫ t

0
dt′ 〈Ψn|eδΦ|Ψi〉ei2πνn,it

′ (6.5)

= −〈Ψn|eRe
[
BRsinϑei(ϕ−ωt)

]
|Ψi〉

ei2πνn,it

h(νn,i − ν)

− 〈Ψn|eRe
[
BRsinϑei(ϕ+2πνt)

]
|Ψi〉

ei2πνn,it

h(νn,i + ν)
.

(6.6)

δΦ(r, t) causes a time-dependent probability density and thus a time-varying charge
density. The resultant charge density is then given by

ρ(r, t) = e|Ψ(r, t)|2 = e|Ψi(r)|2 + eΨi(r)∗δΨ(r, t) + eΨi(r)(δΨ(r, t))∗. (6.7)

We consider a transition from the initial state |Ψi〉 = |s, n,m〉 to a final state |Ψf〉 =

|s′, n′,m′〉, induced by circularly polarised light travelling along the c-axis of the material.
For a Fermi level at EF = A/R, the only allowed transitions are those described in
Section 5.1.3, such that ∆s = 0 and ∆m = ±1, with the respective matrix elements given
by

〈+, 0, 3/2|sinϑeiϕ|+, 0, 1/2〉 =

√
2

3
, (6.8)

〈+, 1,−1/2|sinϑeiϕ|+, 0, 1/2〉 =

√
2

3
, (6.9)

〈+, 0,−3/2|sinϑeiϕ|+, 0,−1/2〉 =

√
2

3
, (6.10)

〈+, 1, 1/2|sinϑeiϕ|+, 0,−1/2〉 =

√
2

3
. (6.11)
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The time-varying charge density is then given by

ρ(ϑ, ϕ, t) = − e2

3πε0

(
1

A− hνR
+

1

A+ hνR

)
Re
[
Bsinϑ

(
ei(ϕ−2πνt) + ei(ϕ+2πνt)

)]
. (6.12)

We write this as

ρ(r, t) = −δR(ν)ε0Re
[
Bsinϑ

(
ei(ϕ−2πνt) + ei(ϕ+2πνt)

)]
= −δR(ν)ε0

R
Φin, (6.13)

where

δR(ν) =
e2

3πε0

(
1

A− hνR
+

1

A+ hνR

)
. (6.14)

For a Fermi level within ±A/R, δR(ν) is modified owing to the absence of an energy level
at E = 0, meaning that the spacing between energy levels directly above and below the
Dirac point is 2A/R. For a Fermi energy at EF = 0, we can repeat the process and find
that

δR(ν) =
e2

6πε0

(
1

2A− hνR
+

1

2A+ hνR

)
. (6.15)

We thus far have an expression for the potential inside the TINP and the charge density on
the surface. The potential outside of the TINP will be of the form

Φout = Re

[
C

r2
sinϑeiϕ − Ersinϑeiϕ

]
, (6.16)

where E is the incident field strength. The interface conditions for Maxwell’s equa-
tions (following from the conditions given in Chapter 3, reformulated in terms of potentials
in spherical coordinates) at the surface of the TINP are given by

∂Φin

∂ϑ

∣∣∣∣
R

=
∂Φout

∂ϑ

∣∣∣∣
R

, (6.17)

ε(ν)
∂Φin

∂r

∣∣∣∣
R

= εoil
∂Φout

∂r

∣∣∣∣
R

+
ρ

ε0
, (6.18)

where εoil is the dielectric constant of the suspension material, in our case mineral in order
to preserve the quality of the particles, for which noil = 1.47 and εoil = 2.16). Solving these
equations for B and C, we find

B =
−3εoil

ε(ν) + δR(ν) + 2εoil
E , (6.19)

C = R3 ε(ν) + δR(ν)− εoil

ε(ν) + δR(ν) + 2εoil
E . (6.20)
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The latter expression is the term giving the induced dipole moment in the external field,
such that E = Eα0/r

3, where the polarizability α0(ν) is given by

α0(ν) = 4πε0R
3 ε(ν) + δR(ν)− εoil

ε(ν) + δR(ν) + 2εoil
. (6.21)

From the polarizability we can then find the absorption cross-section [172],

σabs(ν) =
|k|
ε0

Im [α0(ν)] (6.22)

= 4πR3noil
2π

λ
Im

[
ε(ν) + δR(ν)− εoil

ε(ν) + δR(ν) + 2εoil

]
. (6.23)

Result: Absorption cross-section of a TINP

Polarizability of a TINP of radius R,

α0(ν) = 4πε0R
3 ε(ν) + δR(ν)− εoil

ε(ν) + δR(ν) + 2εoil
. (6.24)

Absorption cross-section of a TINP of radius R,

σabs(ν) = 4πR3noil
2π

λ
Im

[
ε(ν) + δR(ν)− εoil

ε(ν) + δR(ν) + 2εoil

]
, (6.25)

where δR(ν) depends on the Fermi level, EF,

EF =
A

R
: δR(ν) =

e2

3πε0

(
1

A− hνR
+

1

A+ hνR

)
, (6.26)

EF = 0 : δR(ν) =
e2

6πε0

(
1

2A− hνR
+

1

2A+ hνR

)
, (6.27)

and for a trivial insulator, δR(ν) = 0.

6.1.3 Understanding the absorption cross-section

For a given Fermi level, δR(ν) varies only withR and ν. In Figure 6.2a, I plot the theoretically
expected absorption cross-sections of TINPs with EF = A/R and radii 15, 20 and 25 nm
respectively, and the topologically trivial case where δR(ν) = 0. Each cross-section with
a topological contribution has a characteristic shape of three peaks, corresponding to the
β phonon mode, a localised surface plasmon-polariton (LSPP) mode7, and the
SToP mode. A point of zero absorption can be seen for each SToP mode, at which

7The LSPP is not of major importance in this work, we just need to know of its existence. The
experimental data analysed in this chapter is not at frequencies low enough to capture the LSPP.
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a single electron in a topological surface state shields the bulk from absorbing incoming
light. The LSPP and β modes are bulk contributions and as such, their positions do not
change with particle size. The SToP peak position and point of zero-absorption do vary
with R. As the particle size varies, the spacing between discretized surface state energies
varies as ∼ 1/R. This in turn changes the frequency at which the particle polarizability is
modified when a surface state is excited, as described by δR(ν). This in turn leads to a
R-dependence of the absorption cross-section of the nanoparticle. As particle size is reduced,
the frequency of surface state excitations increases, and thus the SToP mode peak and point
of zero-absorption both shift to higher frequencies. For particles of approximately R = 15

nm, the SToP mode appears on top of the β phonon mode, resulting in a double peak
structure of broader linewidth. The behaviour of the SToP mode and zero absorption trough
can also be seen in Figure 6.2c, which shows the behaviour of the absorption cross-section
for varying R and ν for EF = A/R.

Figure 6.2b shows σabs(ν)/πR2 for a particle R = 40 nm, at the two Fermi levels EF = A/R

and EF = 0. While the bulk modes remain in the same positions, we see a shift in the
SToP mode peaks. Although we do not know the precise Fermi level of each TINP in the
sample, for particles whose Fermi level resides in the band gap (and thus contribute to
the SToP mode peak in the absorption cross-section) it is most likely that transitions are
occurring between energy levels separated by A/R rather than 2A/R.

The R and ν dependence of the absorption cross-section is illustrated in Figure 6.2c. In
order to demonstrate how the various contributions to the dielectric function manifest in the
absorption cross-section, I perform a further study in which we artificially remove first the
α phonon and then the β phonon contribution from the theoretical calculation. Figure 6.3a
gives the absorption cross-section with no modifications. Figure 6.3b gives the absorption
cross-section as a function of ν and R with the LSPP contribution artificially removed (such
that νp,f = 0). The position of the removed mode is given in white, while the β phonon
peak, SToP mode and trough of zero absorption can be clearly seen. In Figure 6.3c, the
α phonon contribution is also removed, (such that νp,f = νp,α = 0). The trough of zero
absorption can still be seen, but the SToP mode peak is no longer present. This confirms
that the SToP mode is mediated by the α phonon. This is further confirmed in Figure 6.3d,
in which both the LSPP and β phonon contributions are removed (νp,f = νp,β = 0) and the
SToP mode is still present.

6.1.4 Modifying theory parameters

Throughout the work of this thesis, the crystal structure has been taken to be isotropic,
such that A = 1

3(A0 + 2B0). Figure. 6.4a shows how the theoretically calculated absorption
cross-section varies with uncertainty in A. Shifting A→ A′ by 10% shifts the position of
the SToP peak by < 10%. Figure 6.4b illustrates that modifying the magnitude of the
topological contribution to the particle polarizability δR(ν) (by multiplying by a constant
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Figure 6.2: TINP absorption cross-section:(a) Absorption cross-section of a TINP
with EF = A/R, R=(15, 20, 25) nm and a TINP of radius 15 nm for which δR = 0. The
LSPP and β mode are visible and labelled, whilst the α mode is over-damped and thus not
seen in the theoretically calculated absorption cross-section. Increased TINP radius results
in a lower frequency SToP mode peak (also labelled). For R = 15 nm, the SToP mode and
β modes overlap and a split peak is seen. For each SToP mode there is a point of zero
absorption which occurs to the right of the peak. (b) Changing the Fermi level from EF

= A/R to EF = 0 (for R = 40 nm) results in the SToP mode occurring in the absorption
cross-section at twice the frequency of incoming light, shown for R = 40 nm. (c) Absorption
cross-section varying with R and ν. The bulk LSPP and β phonon positions remain constant
for varying radius size, and the line of zero-absorption is annotated (A = hνR). Figures
modified from [6], published by The Royal Society of Chemistry.
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Figure 6.3: Modifying the dielectric function: (a) Absorption cross-section with no
modifications. (b) Absorption cross-section with LSPP mode (highlighted with white
dotted line)) removed from the dielectric function (νp,f = 0). (c) Absorption cross-section
with both LSPP and α phonon contributions removed (νp,f = νp,α = 0). The trough of
zero-absorption is still seen, but the SToP mode is no longer present. (d) Absorption
cross-section with both LSPP and β phonon contributions (highlighted with a white dotted
line) removed (νp,f = νp,β = 0). Figures modified from [6], published by The Royal Society
of Chemistry.
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Figure 6.4: Modifying theory parameters: (a) For R = 20 nm, varying A by 10%,
which shifts the position of the SToP mode peak and modifies the height of the peak. (b)
Varying the magnitude of δR(ν) by 10 %, which has no effect on the position of the SToP
mode peak and very little effect on the height of the peak. (c) Introducing a small complex
component to the denominator of δR(ν), iΓA, equivalent to introducing a finite life time
to the excited surface states. Introduction of this finite lifetime reduces the height of the
SToP mode peak. (d) Comparison of absorption cross-section for nanoparticles of varying
geometry and size. Absorption cross-section of sphere (dotted blue) with R = 20 nm,
projection S = πR2. Absorption cross-section for a cube with diagonal length 2R = 40 nm
(green), such that L = 28.2 nm, and projection S = L2. Absorption cross-section of cube
of length L = 32.2 nm (purple) and S = L2, with volume V = L3 = 4πR3

eff/3 such that
effective radius Reff = 20 nm. Figures modified from [6], published by The Royal Society of
Chemistry.
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coefficient δcoeff), has little effect on the position of the SToP peak. Figure 6.4c shows
that when a finite lifetime of excited surface states is considered (by subtracting a small,
complex component iΓA from the denominator of all δR(ν) terms), the height of the SToP
mode peak becomes smaller (for a particle of R = 20 nm and Γ = 0.01, the height of the
SToP mode peak reduces by ∼ 45%) and the position remains the same.

δR(ν) has no dependence on the dielectric function of either the topological material or the
mineral oil, but is affected by the A value. The peak in absorption due to the topological
term will experience a shift dependent on which material is being used. For example, the
SToP peak for a R=20 nm TINP made of Bi2Te3 and Fermi level EF = A/R will occur at
2.21 THz, whereas for a Bi2Se3 TINP of the same radius (with A=3.0 eVÅ [49], as studied
in the original work by Siroki et al. [5]) the peak will occur at 3.1 THz.

As can be seen in the tunneling electron microscope (TEM) images of Figure 6.6a,
the synthesised Bi2Te3 nanoparticles8 discussed in this work are rhombohedral, however
their topological properties are well-approximated by those of spherical particles, due to
the robustness of topological states against surface deformation. This is demonstrated in
References [5, 35] in which it is shown that the discrete energy levels of TI nanospheres
and nanocubes of equal volume converge for particles of radius R > 10 nm. This idea is
also demonstrated in Figure 4.7a of Chapter 4, in which a TI nanosphere is deformed to
a prolate nanospheroid at constant volume. The energy levels are fairly robust against
this deformation, and the degeneracy of the energy levels is not lifted until the particle
axes differ by ∼ 10%. This means that the topological contribution to the absorption
cross-section is also approximately the same for equiaxial particles of equal volume.

If a cube of volume V were to be deformed to a sphere, it would have an effective radius Reff ,
such that V = 4πR3

eff/3. This value of Reff can then be used in Equation 6.26 to calculate
the topological contribution to the absorption cross-section, δR(ν). The absorption cross-
section of a cube can also be calculated analytically [214], with the topological contribution
described as above. In Figure 6.4d we plot the absorption cross-sections of a sphere with
R = 20 nm (dotted blue), a cube with diagonal length 2R (green), such that L = 28.3 nm
and a cube with Reff = 20 nm (purple), such that it has the same volume as the sphere.
The cross-sections are normalised by the projection of each nanostructure, i.e. S = πR2

for the sphere and S = L2 for the cubes. The qualitative results for each nanostructure
are very similar, with the sphere and cube of equal volume demonstrating a SToP peak
and point of zero-absorption at the same positions. The cube with diagonal length equal
to the diameter of the sphere has a slightly smaller effective radius, and thus presents a
SToP mode and point of zero-absorption shifted to a slightly higher frequency. As the
rhombohedral nanoparticles in our experiment fall between the two limits of a sphere and a

8I include some details on how the nanoparticles are synthesised in Appendix B.12 for interested
experimentalists, but do not include it in the main text as this was not my work, and an in-depth
understanding of the experimental method is not needed to understand the results of this section.
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Figure 6.5: Ensembles of TINPs: For an ensemble of particles with a Gaussian distribu-
tion of radii (R̄ = 17.5 nm and standard deviation 1.8 nm) and in which only (10,15,20) %
of TINPs show a SToP mode, the peak height is greatly reduced and no longer displays
a point of zero absorption. Figure modified from [6], published by The Royal Society of
Chemistry.

cube, we conclude that approximating the rhombohedral nanoparticles as spherical should
give a qualitatively good result.

6.1.5 Ensembles of TINPs

So far we have discussed the optical properties of a single TINP, which is representative of
an ensemble of non-interacting particles of equal radius, normalised to the number of TINPs.
However in our experimental sample, we have a partial agglomerate9 of nanoparticles,
and the nanoparticles have a range of radii. Before measurements were taken, the sample
was agitated to separate the nanoparticles. It is, however, inevitable that some particles
will remain as an agglomerate. We would expect this agglomerate to contribute to the
bulk properties of the absorption-cross section, but lose the quantum confinement effects
expected from small, separate nanoparticles. Any topological peak from such a large mass
of material would occur at such a low frequency as to not be measured in our experiment.
For example, a particle of R = 100 nm would be expected to exhibit a SToP mode peak
at approximately 0.45 THz with a greatly suppressed amplitude. This is outside of the
frequency range of our measured data. So, we do not expect partial agglomerates to
contribute topological features to the absorption cross-section.

Due to uncertainty in the Fermi level and orientation of each TINP in relation to the
incoming light, it can be assumed that while all TINPs contribute to the bulk properties of

9Agglomerate: Some of the particles have grouped into a single mass.

139



1.5 2 2.5 3 3.5 4
 (THz)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ab
s (A

.U
.)

Experimental data
Peaks 1 & 2
Peaks 3 & 4

P1

P3

P4

P2

α// β// β⊥α⊥

a

Bi2Te3 nanoparticles

Bi nanoparticles

σ a
bs

[A
.U

.]

0.04

0.08
0.07
0.06
0.05

0.03
0.02
0.01

01.5 2 32.5 3.5 4
ν [THz]

α∥ α⊥ β∥β⊥

P3 & P4
P1 & P2
Data

1.5 2 2.5 3 3.5 4
 (THz)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ab
s (A

.U
.)

Experimental data
Peaks 1 & 2
Peaks 3 & 4

P1

P3

P4

P2

α// β// β⊥α⊥

P1

P2

P3

P4

bi

ii

Figure 6.6: Experimental results: (a) TEM images of (i) Bi nanoparticles, which
are nearly spherical and of average radius 14.4 nm. (ii) Successfully synthesized Bi2Te3

nanoparticles with a slightly rhombohedral shape and average radius of 17.5 nm. (b)
Experimental absorption cross-section data with impurity absorption band subtracted,
superimposed with a Lorentzian decomposition of the same data, fitted with four peaks,
P1-P4. Figure modified from [6], published by The Royal Society of Chemistry.

the absorption cross-section, only a small percentage will give a topological contribution.
Figure 6.5 illustrates the theoretically calculated absorption cross-section of an ensemble of
TINPs of mean radius 17.5 nm and standard deviation 1.8 nm (values taken from analysis
of TEM images of the experimental sample), with a varying percentage contributing to the
topological property. The peak height is greatly suppressed and a point of zero-absorption
is no longer observed.

6.1.6 Comparison to experimental results

In Figure 6.6b, we show the experimental absorption cross-section (solid black line) of
Bi2Te3 TINPs suspended in mineral oil, measured at 300 K. The vertical dotted lines denote
the four phonon frequencies (α‖, β‖, α⊥, β⊥) corresponding to the two bulk dielectric
functions ε‖ and ε⊥ respectively.10 We have performed a Lorentzian decomposition
using four Lorentz peaks, with fit values given in Table 6.2. Using four peaks (which we
label P1-P4) yields a fitting error of 0.23%, whereas using three or five peaks results in an
error of 2.3% or 3.4% respectively. This method is described in more detail in Appendix C.3.
We assign P3 and P4 to the β‖ and β⊥ phonons respectively. α phonons are typically
under-damped in bulk samples and so not observed in the theoretical calculations of the
absorption cross-section using the bulk dielectric function (as demonstrated in Figures 6.2a-

10Recalling that α‖ and β‖ are the A1
1u and A2

1u modes from Chapter 2, and α‖ and β‖ are the E1
u and

E2
u modes respectively.
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P1 P2 P3 P4

Peak position (THz) 1.98 2.41 2.95 3.77
Peak width (THz) 0.51 0.42 0.86 1.26

Table 6.2: Parameters of Lorentzian fit: Parameters of the four peak Lorentzian fit
with a fit error of 0.24%.

c). This can be understood by studying the bulk dielectric function for Bi2Te3 depicted in
Figure 6.1, where the very large value of Im[ε(ν)] at the α phonon frequency will result in a
very small contribution to σabs(ν) (given in equation 6.25) at this frequency. However, finite
size effects may reduce damping of transverse modes, resulting in an increased amplitude
which may be visible in the absorption cross-section. So, it is possible that the α⊥ phonon
also slightly contributes to the amplitude of P3.

P1 and P2 do not appear to relate to any expected bulk modes. We rule out
oxidation effects as the sample was kept in chloroform, and exchanged for mineral oil for
THz measurements. Samples typically show oxidation effects on the time-scale of days [209],
which is not the case for our sample. We note that P2 appears at a frequency commensurate
with the SToP mode peak predicted for an ensemble of varying radius as demonstrated in
Figure 6.5. While the short height of the SToP mode peak is partially explained by the
assumption that very few particles contribute to the topological properties of the sample,
we also note that our theory is modelled at zero temperature, whereas the experiment
operates at room temperature (∼ 6 THz), where the probability of finding a level empty
in our system is low. Temperature smearing will result in the modes seen experimentally
being less visible than those seen in theory. This could be remedied by studying a TI with
a bigger band gap and/or smaller particles. It is possible that the presence of two new
non-bulk modes (P1 and P2) is due to SToP modes resulting from both the α‖ and α⊥
phonons.

The observation of two unexpected peaks at frequencies which do not relate to expected
bulk modes allows us to conclude that at least one of the peaks is likely topological
in origin. We conclude from this experimental comparison with the theory model that we
have observed the SToP mode in Bi2Te3 nanoparticles, which was theoretically predicted
in [5].

6.2 TINP modifying the photonic local density of states (LDOS)

In the previous section we demonstrated that excitations of the topological surface states
of a TI nanostructure can modify the absorption cross-section of the structure - a
bulk optical property. We now look at how these excitations can alter the environment
surrounding the TI nanostructure via the photonic local density of states.
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Figure 6.7: Probing the photonic LDOS near a TINP: Dipole at a distance h from
the surface of a of a spherical TINP of radius R.

It is already well known that dielectric nanostructures11 will modify the photonic
LDOS in their immediate surroundings by producing an effective dipole in response to a
probe dipole [172]. The strength of the effective dipole will depend on the polarizability of
the material, α0(ν), and this effective dipole will contribute to the electric field outside of
the material and ultimately modify the photonic LDOS. The nanostructure will also absorb
some of the power radiated by the probe dipole, and the energy will be redistributed as
heat. This absorption of power will also affect the photonic LDOS.

We already demonstrated in Section 6.1.2 that excitations between topological surface states
result in modifications to both the polarizability of TINP and the boundary conditions of the
electric field at the TINP surface, and so we can also expect a topological modification
to the photonic LDOS.

6.2.1 Setup

We consider a spherical TINP at position r1 = 0, and place a probe dipole, µ2, at position
r2 = (R+ h)ẑ as displayed in Figure 6.7. R is the radius of the TINP and h is the distance
of the probe dipole from the surface. We take the c-axis of the material to be parallel
to the z-axis, and we also assume that µ2 is aligned with the z-axis such that µ2 = µzẑ.
This greatly simplifies the calculation, but means that in what follows we are technically
calculating the partial LDOS, gz(r, ω). To calculate the full LDOS we would need to
consider a general dipole with components both parallel and perpendicular to the z axis,
such that µ2 = µxx̂+µzẑ. This calculation is much more cumbersome, and so it is omitted
from the current work. The presence of dipole µ2 will induce a dipole in the TINP, which
we denote µ1.

We will be employing Green’s functions (see Section 3.6), which are normally expressed
using angular frequency, ω = 2πν and so all calculations in this section will be undertaken
using ω. The polarizability of the TINP was derived in Section 6.1.2 and in terms of ω,

11Dielectric materials are electrical insulators that can be polarized by an incoming electric field.
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is given by

α(ω) = 4πε0R
3

[
ε(ω) + δR(ω)− 1

ε(ω) + δR(ω) + 2

]
, (6.28)

where R is the radius of the particle, and ε(ω) is the dielectric function of the particle given
in Equation 6.1. δR(ω) is the contribution to the polarizability due to changes in the surface
charge density when transitions occur between topological surface states and depends on
the Fermi level of the system, given in Equation 6.26 for EF = A/R and Equation 6.27 for
EF = 0.

The electric fields acting on the dipoles at r1 and r2 respectively are given by

E1(ω) =
1

ε0

ω2

c2
G(0, (R+ h)ẑ, ω)µ2, (6.29)

E2(ω) =
1

ε0

ω2

c2
G((R+ h)ẑ, 0, ω)µ1, (6.30)

where G(0, R+ h, ω) is the dyadic Green’s function. Introducing polarizability of the
nanoparticle, we can write µ1 in the form

µ1 = α0(ω)E1 = α0(ω)
1

ε0

ω2

c2
G(0, (R+ h)ẑ, ω)µ2. (6.31)

We recall from Section 3.6 that the dyadic Green’s function G(r1, r2, ω) is given by

G(r1, r2, ω) =

(
I +

1

k2
∇2

)
eik|r2−r1|

4π|r2 − r1|
. (6.32)

By explicitly calculating this expression (or by recalling the form of G(r1, r2, ω) found in
Section 3.6 for Cartesian coordinates and substituting), we find the dyadic Green’s function
to be

G(0, (R+ h)ẑ, ω) ≈ 2

k2

1

4π(R+ h)3
I. (6.33)

From Equation 6.31 we can find µ1 to be

µ1 = α0(ω)
1

ε0

ω2

c2
G(0, (R+ h)ẑ, ω)µ2 (6.34)

= 2α̃0(ω)
R3

(R+ h)3
µ2, (6.35)

where we have re-scaled the polarizability such that α0(ω) = 4πε0R
3α̃0(ω).
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6.2.2 Calculating photonic LDOS

In order to calculate the photonic LDOS for the system, we recall from Section 3.7 the
relationship between the photonic LDOS and dissipated power, P ,

g(r2, ω) =
ω2

π2c3

P

P 0
=

ω2

π2c3

Prad + Ploss
P 0

, (6.36)

where the total power dissipated by the system is given by P = Prad + Ploss, taking into
account the two dissipation channels of radiation and intrinsic losses. In order to
calculate the LDOS, we need to calculate both Prad/P

0 and Ploss/P
0, where we will assume

that P 0 is given by P 0 = P 0
rad such that the probe dipole is lossless. The dipole radiation

in free space for the probe dipole (from Equation 3.127) is given by

P 0
rad =

ω4

12πε0c3
|µ2|2. (6.37)

6.2.2.1 Radiated power

As the nanoparticle radius is much smaller than the radiation wavelength, we take the long
wavelength limit [173] in which the power radiated from the probe dipole in the presence
of the nanoparticle is given by

Prad =
ω4

12πε0c3
|µ2 + µ1|2. (6.38)

The normalised radiated power, (i.e. the ratio of power radiated by a dipole in the
presence of a nanoparticle and power radiated in the absence of a nanoparticle) is thus
given by

Prad

P 0
rad

=
|µ2 + µ1|2

|µ2|2
(6.39)

=

∣∣∣∣∣1 + 2α̃(ω)
R3

(R+ h)3

∣∣∣∣∣
2

. (6.40)

6.2.2.2 Lost power

We now calculate the normalised power loss, Ploss/P
0. We assume the probe dipole is

close enough to the surface that we can treat the surface of the TINP as flat12 [173] - in
order to calculate the power lost from being close to the surface, we recall from Section 3.6

12Corrections can be added to account for curvature [188, 215, 216] but do not affect the qualitative
result at small values of h/R.

144



that the power dissipated by a probe dipole near a surface can be calculated from

Ploss =
ω

2
Im [µ∗2E(r2)] . (6.41)

To calculate Ploss, we thus need to calculate E(r2), taking into account the effect of the
TINP and its surface states. In order to do so, we use the method of images13.

We model the TINP as a half space with boundary at z = R. The probe dipole µ2 = µ2ẑ

is located at z = R + h, and the presence of the dipole induces a bound charge on the
interface. This boundary condition can be mimicked by the introduction of an image dipole,
µ3 = µ3ẑ, placed at z = R− h. The potential outside of the TINP will be given by

Φout =
1

4πε0

µ2

|r− (R+ h)ẑ|2
sinϑ+

1

4πε0

µ3

|r− (R− h)ẑ|2
sinϑ. (6.42)

The potential inside the TINP will be a dipole field due to the probe dipole at R + h, with
a modified dipole moment µ4 = µ4ẑ,

Φin =
1

4πε0

µ4

|r− (R+ h)ẑ|2
sinϑ. (6.43)

Following the same derivation as in Section 6.1.2, the charge density on the surface z = R

is given by

ρ = −δR(ω)ε0
R

Φin, (6.44)

and the interface conditions that must be satisfied are

∂Φin

∂ϑ

∣∣∣∣
R

=
∂Φout

∂ϑ

∣∣∣∣
R

, (6.45)

ε(ω)
∂Φin

∂r

∣∣∣∣
R

=
∂Φout

∂r

∣∣∣∣
R

+
ρ

ε0
. (6.46)

Using the expressions for Φin, Φout and the surface charge density, these equations reduce
to the conditions

µ2 + µ3 = −
(
ε(ω) +

h

2R
δR(ω)

)
µ4, (6.47)

µ3 − µ2 = µ4. (6.48)

Combined, we find that

µ3 =

(
ε(ω) + h

2RδR(ω)− 1

ε(ω) + h
2RδR(ω) + 1

)
µ2 (6.49)

13The method of images to solve electromagnetic problems should be familiar from a standard under-
graduate electromagnetism course. Jackson’s textbook provides excellent coverage of this method [147].
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The expression for Φout can then be written as

Φout =

(
1

4πε0

1

|r− (R+ h)ẑ|2
sinϑ (6.50)

+
1

4πε0

(
ε(ω) + h

2RδR(ω)− 1

ε(ω) + h
2RδR(ω) + 1

)
1

|r− (R− h)ẑ|2
sinϑ

)
µ2. (6.51)

The electric field acting at the position of the probe dipole, E2 = −∇Φout|z=R+h,ϑ=0, is
given by

E2(ω) =
1

16πε0h3

[
ε(ω) + h

2RδR(ω)− 1

ε(ω) + h
2RδR(ω) + 1

]
µ2ẑ (6.52)

=
1

16πε0h3

[
ε(ω) + h

2RδR(ω)− 1

ε(ω) + h
2RδR(ω) + 1

]
µ2. (6.53)

We can then calculate the power dissipated,

Ploss =
ω

2
Im {µ∗2 ·E2(ω)} (6.54)

=
ω

32πε0z3
|µ2|2Im

{
ε(ω) + h

2RδR(ω)− 1

ε(ω) + h
2RδR(ω) + 1

}
. (6.55)

As we have treated the system as a half space, P0 = ω4|µ2
2|/24πε0c

3, we can then find
Ploss/P0 as

Ploss

P 0
=

3

4k3
Im

[
ε(ω) + h

2RδR(ω)− 1

ε(ω) + h
2RδR(ω) + 1

]
1

h3
. (6.56)

With these results we can then write down the LDOS at r2 using Equation 6.36, such that

gz(h, ω) =
ω2

π2c3

∣∣∣∣∣1 + 2α̃(ω)
R3

(R+ h)3

∣∣∣∣∣
2

+
3

4k3
Im

[
ε(ω) + h

2RδR(ω)− 1

ε(ω) + h
2RδR(ω) + 1

]
1

h3

 .
(6.57)

For δR(ω) = 0, this result simplifies to the expected result for the partial LDOS modified
near a dielectric nanoparticle [173, 217].
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Result: The photonic LDOS modified near a TINP

The partial photonic LDOS at distance h from a TINP of radius R,

gz(h, ω) =
ω2

π2c3

∣∣∣∣∣1 + 2α̃(ω)
R3

(R+ h)3

∣∣∣∣∣
2

+
3

4k3
Im

[
ε(ω) + h

2RδR(ω)− 1

ε(ω) + h
2RδR(ω) + 1

]
1

h3

 .
(6.58)

where δR(ω) depends on the Fermi level, EF,

EF = A/R : δR =
e2

3πε0

(
1

A− ~ωR
+

1

A+ ~ωR

)
(6.59)

EF = 0 : δR =
e2

6πε0

(
1

2A− ~ωR
+

1

2A+ ~ωR

)
(6.60)

and for a trivial insulator, δR(ω) = 0.

The results are presented in Figure 6.8. In Figure 6.8a the normalised partial LDOS,
gz(h, ω)/g3D(ω), is plotted as a function of h and ν = ω/2π for a TINP of R = 30 nm
and EF = 0. A broad mode can be seen resulting from the β mode. A sharp peak due to
the SToP mode is seen, followed by a minimum at 2A = ~ωR. This sharp peak followed
by a minimum is typical of Fano resonances (as already seen in Section 6.1 and discussed
in Appendix B.11). In Figure 6.8b, gz(h, ω)/g3D(ω) is plotted for R = (30, 40, 50) nm at
a distance of 5 nm away from the TINP surface. The topological peak moves to lower
frequencies as R is increased, as the energy spacing between topological surface states
decreases. The height of the peak also decreases as R increases. I plot the result for a TINP
of R = 30 nm with the same bulk dielectric function ε(ω), but no topological surface states.
The broad mode due to the β mode is retained, but the SToP mode is absent. Results
for EF = A/R (depicted in Figures 6.8c and d) are qualitatively the same, with results
plotted for R = (15, 20, 25) nm. In Figure 6.8e I plot the maximal enhancement of the
partial LDOS near a TINP with R = 30 nm EF = 0 (purple line) and a non-topological
NP of the same radius (black dotted line), for varying distance from the TINP surface,
h. The enhancement due to the NP reduces monotonically with increasing h, while the
enhancement due to the TINP also reduces with increasing h, but exhibits oscillatory
behaviour. Finally in Figure 6.8f, I plot the normalised partial LDOS at a distance 5 nm
from a TINP with R = 30 nm, for differing Fermi levels EF = 0 (purple) and EF = A/R

(green). The SToP peak is greatly suppressed for the EF = A/R case.

We can see that the presence of the topological surface states and the subsequent SToP
mode presents a radical enhancement of the photonic LDOS near the TINP. Very close to
the TINP, this enhancement can be on the order of ∼ 109, much greater than the effect of
an equivalent non-topological particle. This setup has the benefit of many parameters which
can be tuned, giving another tool for controlling THz frequency light at the nanoscale.
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Figure 6.8: Modifying the photonic LDOS near a TINP: (a) Plot of the normalised
partial LDOS, gz(h, ω)/g3D(ω), near a R = 30 nm particle with EF = 0 as a function of h
and ω/2π. (b) The normalised partial LDOS at a distance of 5 nm from the surface of a
TINP with EF = 0 and R = (30, 40, 50)nm. (c) The normalised partial LDOS near a 15 nm
particle with EF = A/R as a function of h and ω/2π. (d) The normalised partial LDOS at
a distance of 5 nm from the surface of a TINP with EF = A/R and R = (15, 20, 25)nm. (e)
Maximum enhancement for a TINP of R = 30 nm, EF = 0 as a function of h, compared
to a NP with the same ε(ν) but no topological surface states. (b) A comparison of the
normalised partial LDOS for varying EF for TINPs of radius R = 30 nm.
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7. Conclusions

7.1 Summary

In this thesis, I set out to expand the current knowledge of topological nanophotonics
while providing an accessible resource allowing students to enter the field from a general
physics background.

The research undertaken for this thesis has spanned three strands. Topological (TI)
nanostructures have quantised, symmetry-protected surface states with discrete energies.
I have extended the knowledge of the electronic structure of TI spheroidal nanostructure
surface states and their respective energies. Their energy levels can be tuned with the
nanostructure dimensions, and I have presented results spanning from the infinite nanowire
to the ideal nanodisk. These TI nanostructure surface states can be coupled with terahertz
(THz) frequency light, which is a much coveted operating frequency range and I refer
to them as topological quantum dots (TQDs).

I have demonstrated that a single TQD can successfully lase in the THz when placed in
a 1D open cavity at zero temperature, with an ultra-low threshold. I have given a road
map towards room temperature lasing using nothing but thermal photons as a pump.

I have presented the results of an experimental collaboration, in which we demonstrated that
a new polariton mode (the STOP mode) has been observed in Bi2Te3 nanoparticles
at room temperature, as a direct consequence of the quantised surface states. Transitions
between surface states occur at frequencies commensurate with a bulk phonon, leading to a
strong Fano resonance. Even in real-world samples of non-spherical, non-uniformly sized
nanoparticles at room temperature we can observe a signature of the quantised topological
surface states. I show that the presence of this mode also allows us to manipulate light in
the environment of a TQD. I give a theoretical study of the photonic local density of states
in the vicinity of a TQD, and demonstrate an amplification of the photonic LDOS
of a factor of up to 109. This could have potential impact in THz technologies in which
control of THz light is desired at the nanoscale.

7.2 Outlook and future work

Topological nanophotonics is a youthful and fast developing field, and there is much work
yet to be done. Every topic I have encountered has sparked new questions and potential
research directions. Direct extensions of the work in this thesis include but are not limited
to the following.
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Finite temperature lasing from a single TQD in a 3D cavity is a realistic goal, based on the
results of Chapter 5. Following the road map detailed in that chapter, it should be possible
to design a system in which this goal can be realised. A system employing multiple TQDs
should provide an exponential enhancement of output power, so this is an avenue which
should be explored.

The experimental results of Chapter 6 represent an important milestone in the detection of
topological states at the nanoscale. However, on the path to complete control of THz light
using TI nanostructures, it will be important to extend this work. By comparing the results
of this work with similar experiments with Sb2Se3 (a material in the same family as Bi2Te3

but without topological properties) we can definitively show that the extra peaks seen in
our work are due to topology. Additionally, it will be crucial to show control of the SToP
mode by demonstrating its dependence on the shape and size of different TI nanostructures.
This will require experimental efforts to reliably produce TI nanostructures of well-defined
shape, size and doping.

All of the results of this thesis have been based on individual TQDs, or multiple non-
interacting TQDs. Hybrid systems involving TQDs coupled to quantum emitters have been
subject to their first study [197], and this opens up a large new area of using the unusual
optical and electronic properties of TQDs as part of larger, hybrid systems. This could
include studies of TQDs interacting with each other, and other quantum systems such as
metallic and semiconductor nanoparticles, and 2D materials.

Due to the robustness of TQD surface states, this system lends itself naturally as a platform
to host a qubit. The long lifetime of the states, and potentially high-level of tunability and
control of the states means that this could be an exciting area of study. The M1 and E2
transitions in this system have even longer lifetimes than the E1 transitions of focus in this
thesis, and so it would be important to understand how these transitions could be utilised.
The long lifetimes of these states also suggest that TQDs could be used as a single THz
photon source, an idea that can already be envisaged by studying the results of Chapter 5,
in which a single TQD slowly produces coherent photons.

Any of these suggested research avenues, and in fact all of the results in Chapters 5 and
6 of this thesis could also be extended by considering TI nanostructure shapes other
than the nanosphere. I used the nanosphere in this work due to the simplicity of the
energy levels and known analytical form of the surface states. However, with the results
of Chapter 4 we can now study any of the phenomena discussed in this thesis applied
to non-spherical nanostructures. As discussed in Chapter 4, some geometries are easier
to experimentally produce that others - notably, the growth of wires (which can then
be truncated into nanopillars) and the growth of thin films (which can then be cut into
nanodisks via lithography). By studying the phenomena discussed in this thesis in these
geometries, they could be experimentally verified and developed, with the aim of using
them in THz technologies. Calculations have already been done for spontaneous emission
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of an atom near a spheroidal nanostructure [188]. These calculations could be extended
with the addition of the SToP mode for complete control of photonic LDOS with potential
for experimental validation and technological use.

Overall, I have demonstrated that topological nanophotonics using TI nanostructures is
an exciting field with plenty of opportunities for understanding topological light-matter
interactions at the nanoscale, and potential for controlling THz light which could be
transformative in THz technologies.
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A. Useful maths, formalisms and conventions

In this appendix I give the definitions and conventions used in this thesis. I also include
some additional information on some of the formalisms used in my work.

A.1 Pauli matrices

The Pauli matrices1 are a set of 2 × 2 complex matrices, which are both unitary and
Hermitian.They are given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
. (A.1)

Together with the 2 × 2 identity matrix, 12, they form a basis for all 2 × 2 Hermitian
matrices, such that any 2 × 2 Hermitian matrix can be written as a linear sum of Pauli
matrices with real coefficients.

A.2 Unusual algebraic operations

There are various times in this thesis where I make reference to less-common algebraic
operations in order to exploit convenient notation. I give a quick overview of these operations
here.

Tensor product

The tensor product of two matrices is given explicitly by

a⊗ b =

(
a11 a12

a21 a22

)
⊗

(
b11 b12

b21 b22

)
=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 . (A.2)

For our purposes (and with apologies to mathematicians everywhere), we use this inter-
changeably with the outer product a⊗ b or dyadic product, ab.

1Named for Wolfgang Pauli, one of the pioneers of quantum theory. Interestingly, Pauli seldom published
papers but preferred to write to colleagues such as Bohr and Heisenberg, who would then circulate the
ideas contained in the correspondence.
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Hadamard product

The Hadamard product is element-wise multiplication, given by

a ◦ b =

(
a11 a12

a21 a22

)
◦

(
b11 b12

b21 b22

)
=

(
a11b11 a12b12

a21b21 a22b22

)
. (A.3)

Hadamard multiplication requires a and b to be of the same dimensions.

A.3 Scalars, vectors and dyads

Dyads may not be discussed in a standard undergraduate physics course, and so I briefly
give their definition here, with other algebraic objects for context.

Scalar: Rank 0 tensor. A quantity with no associated direction.

Vector: Rank one tensor. A quantity with a magnitude and one associated direction.

Dyad: Rank one, order two tensor. A quantity that has a magnitude and two associated
directions.

Dyadic: Tensor of order two (may be full rank or not). A sum of dyads.

Dyadics and matrices have similarities, and in Euclidean space can be considered the
same, although a dyadic is more strictly defined as the sum of dyads, which are a result of
dyadic products (see Appendix A.2) of two vectors.

A.4 Coordinate systems

Multiple coordinate systems are used in this thesis, which are summarised below. Oblate
and prolate spheroidal coordinates are less-widely used and yet are crucial for the work in
Chapter 4, so I discuss them in more detail.

Cartesian coordinates: (x, y, z)

Spherical coordinates: (r, ϑ, ϕ)

Conversion to Cartesian coordinates given by (x, y, z) = (rsinϑcosϕ, rsinϑsinϕ, rcosϑ)

Oblate spheroidal coordinates: (ζ, ξ, ϕ)

The variable can be written as ζ = sinhµ and ξ = sinν. A non-conventional form can also
be written, (ζ, τ, ϕ), where τ = cosν. Conversion to Cartesian coordinates is given by
(x, y, z) =

(
a
√

(1 + ζ2)(1− τ2)cosϕ, a
√

(1 + ζ2)(1− τ2)sinϕ, aζτ
)
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Constant µ = µ0 gives a spheroid surface,

x2 + y2

a2cosh2µ0

+
z2

a2sinh2µ0

=
x2 + y2

a2(1 + ζ2
0 )

+
z2

a2ζ2
0

= 1, (A.4)

For a particle with semi-major and semi-minor axes of R1 and R2 respectively,

R1 = acoshµ0 = a
√

1 + ζ2
0 (A.5)

R2 = asinhµ0 = aζ0, (A.6)

tanhµ0 =
R2

R1
, (A.7)

R2
1 −R2

2 = a2. (A.8)

The scale factors are given by

hζ = a

√
ζ2 + ξ2

1 + ζ2
, hξ = a

√
ζ2 + ξ2

1− ξ2
, hϕ = a

√
(1 + ζ2)(1− ξ2). (A.9)

For a sphere, tanh2µ0 = 1 (ζ0 � 1) and for a disk, tanh2µ0 � 1 (ζ0 � 1).

When transforming the Cartesian form of the 4-band Hamiltonian for TIs into spheroidal
coordinates, in Chapter 4, it is necessary to know how the derivatives transform.

∂ζ

∂x
=

aζ

hζhξ
cosϕ,

∂ζ

∂y
=

aζ

hζhξ
sinϕ,

∂ζ

∂z
=
aξ

h2
ζ

, (A.10)

∂ξ

∂x
= − aξ

hζhξ
cosϕ,

∂ξ

∂y
= − aξ

hζhξ
sinϕ,

∂ξ

∂z
=
aζ

h2
ξ

, (A.11)

∂ϕ

∂x
= −sinϕ

hϕ
,

∂ϕ

∂y
=

cosϕ

hϕ
,

∂ϕ

∂z
= 0. (A.12)

We can then write

∂x =
aζ

hζhξ
cosϕ∂ζ −

aξ

hζhξ
cosϕ∂ξ −

sinϕ

hϕ
∂ϕ, (A.13)

∂y =
aζ

hζhξ
sinϕ∂ζ −

aξ

hζhξ
sinϕ∂ξ +

cosϕ

hϕ
∂ϕ, (A.14)

∂z =
aξ

h2
ζ

∂ζ +
aζ

h2
ξ

∂ξ. (A.15)

This allows us to write down expressions for k±,

k+ = kx + iky = −i∂x + ∂y = −ieiϕ aζ

hζhξ
∂ζ + ieiϕ

aξ

hζhξ
∂ξ + eiϕ

1

hϕ
∂ϕ (A.16)

k− = kx − iky = −i∂x − ∂y = −ie−iϕ aζ

hζhξ
∂ζ + ieiϕ

aξ

hζhξ
∂ξ − e−iϕ

1

hϕ
∂ϕ (A.17)
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The expression for ∇2 can then be found through some algebra to be

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

=
1

h2
ζ

∂2

∂ζ2
+

2ζ

a2(ζ2 + ξ2)

∂

∂ζ
− 2ξ

a2(ζ2 + ξ2)

∂

∂ξ
+

1

h2
ξ

∂2

∂ξ2
+

1

h2
ϕ

∂2

∂ϕ2

=
1

a2(ζ2 + ξ2)

(
∂

∂ζ

[
(1 + ζ2)

∂

∂ζ

]
+

∂

∂ξ

[
(1− ξ2)

∂

∂ξ

])
+

1

a2(1 + ζ2)(1− ξ2)

∂2

∂ϕ2
.

(A.18)

Prolate spheroidal coordinates: (σ, τ, ϕ)

Prolate spheroidal coordinates can be defined in a similar way to oblate spheroidal coordi-
nates. Their conversion to Cartesian coordinates is given by
(x, y, z) =

(
a
√

(σ2 − 1)(1− τ2)cosϕ, a
√

(σ2 − 1)(1− τ2)sinϕ, aστ
)
, where σ = cosh(µ) is

real-valued ≥ 1, τ = cos(ν) ∈ [−1, 1], ϕ ∈ [−π, π], and a is a constant of dimension L. A
spheroidal surface can be found from constant σ = σ0, such that

x2 + y2

a2(σ2
0 − 1)

+
z2

a2σ2
0

= 1, (A.19)

The scale factors are given by

hσ = a

√
σ2 − τ2

σ2 − 1
, hτ = a

√
σ2 − τ2

1− τ2
, and hϕ = a

√
(σ2 − 1)(1− τ2), (A.20)

where the momentum operators are given by

kσ = − i

hσ
∂σ, kτ = − i

hτ
∂τ and kϕ = − i

hϕ
∂ϕ, (A.21)

A.5 Jacobi polynomials

The Jacobi polynomials2, Jα,βn (x) satisfy the differential equation[
(1− x2)

d2

dx2
+ (β − α− (α+ β + 2)x)

d

dx
+ n(n+ α+ β + 1)

]
Jα,βn (x) = 0, (A.22)

where the polynomials are orthogonal with respect to the weight (1− x)α (1 + x)β on the
interval x ∈ [−1, 1], where α, β > −1, such that∫ 1

−1
(1− x)α (1 + x)β Jαβn (x)Jαβn′ (x)dx =

δnn′

N2
nαβ

. (A.23)

2Named after their creator, Carl Gustav Jacob Jacobi. Jacobi was the first Jewish mathematician to be
appointed as a professor at a German university, and made many contributions to mathematics on the
topics differential equations, determinants and elliptic functions.
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The normalisation of the polynomials is made such that Jα,β0 (x) = 1, enforced by

N2
nαβ =

(2n+ α+ β + 1)!(n+ α+ β)!n!

2α+β+1Γ(n+ α)!(n+ β)!
. (A.24)

A.6 2nd order ODEs from coupled 1st order ODES

A pair of coupled first order differential equations can be combined into a single, second
order differential equation. To solve the equations in Chapter 4, we are interested in
first order differential equations of the form

f(x)y′(x) + g(x)y(x) =λz(x) (A.25)

p(x)z′(x) + q(x)z(x) =λy(x). (A.26)

We can combine these into a second order equation in either y(x) or z(x), such that

F (x)z′′(x) +G(x)z′(x) +H(x)z(x) = λ2z(x) (A.27)

where

F (x) = f(x)p(x) (A.28)

G(x) = f(x)p′(x) + f(x)q(x) + g(x)p(x) (A.29)

H(x) = f(x)q′(x) + g(x)q(x), (A.30)

or alternatively for y(x),

F (x)y′′(x) +Q(x)y′(x) +R(x)y(x) = λ2y(x), (A.31)

where

F (x) = p(x)f(x) (A.32)

Q(x) = p(x)f ′(x) + p(x)g(x) + q(x)f(x) (A.33)

R(x) = p(x)g′(x) + q(x)g(x). (A.34)

A.7 Useful integrals

Some useful integrals and definitions used in this thesis:∫ ∞
−∞

dt ei(ω
′−ω)t = 2πδ(ω′ − ω) (A.35)
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∣∣∣∣ ∫ ∞
−∞

dt ei(ω
′−ω)t−γt

∣∣∣∣2 =
1

(ω′ − ω)2 + γ2
(A.36)

We define the Fourier transform (and its inverse) using angular frequency, such that

f̃(ω) =
1√
2π

∫ ∞
−∞

dt f(t)eiωt and f(t) =
1√
2π

∫ ∞
−∞

dω f̃(ω)e−iωt. (A.37)

A.8 Time-dependent perturbation theory

Time-dependent perturbation theory [200, 218] allows us to study the effect of a
time-dependent perturbation, V (t), on a time-dependent Hamiltonian, H0, such that
H + H0 + V (t).

A quantum state of the perturbed system, |ψ(t)〉 obeys the time-dependent Schrödinger
equation,

H(t)|ψ(t)〉 = (H0 + V (t)) |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉. (A.38)

The state at each instant of time can be written in terms of the eigenstates of |n〉 of the
unperturbed Hamiltonian, such that

|ψ(t)〉 =
∑
n

cn(t)e−iEnt|n〉. (A.39)

By substituting this expression into Equation A.38, and iteratively solving the resulting
differential equations, an iterative solution can be found

cn(t) = c(0)
n (t) + c(1)

n (t) + c(2)
n (t) + ... (A.40)

The first order term is given by

c(1)
n (t) = − i

~
∑
k

∫ t

0
dt′〈n|V (t′)|k〉c(0)

k e−i(Ek−En)t′/~ (A.41)
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B. Supplementary derivations and information

In this appendix I give extra background theory and derivations that are useful in arriving
at results in the main text, but which did not make it into the body of the thesis.

B.1 Berry phase

Evolve a quantum state on a cyclic path of adiabatic evolution. Hamiltonian H(r), where r

varies with time t. n-th eigenvalue En should remain non-degenerate on the whole path,
and variation with time t should be very slow. Then, |n(r(0))〉 will remain an instantaneous
eigenstate, |n(r(t))〉, of the Hamiltonian, H(r) through the evolution, up to a phase. The
state at time t can be written as

|Ψn(t)〉 = eiγn(t)e−
i
~
∫ t
0 dt
′En(r(t))|n(r(t))〉. (B.1)

The first exponent gives the geometric phase, γn, and the second exponent gives the
dynamical phase. By plugging the state into the time-dependent Sch odinger equation, it
can be shown that

γn = i

∫ t

0
dt′〈n(r(t′))

d

dt′
|n(r(t′))〉 = i

∫ r(t)

r(0)
dr〈n(r)|∇|n(r)〉 (B.2)

In the case of a cyclic evolution around a path C, such that r(t) = r(0), the Berry phase
becomes

γn = i

∫
C
dr〈n(r)|∇|n(r)〉. (B.3)

This can be expressed in terms of the Berry connection, An(r),

γn =

∫
C
drAn(r), (B.4)

where An(r) = i〈n(r)|∇|n(r)〉. In a 3D parameter space the Berry curvature can then be
written as

Ωn(r) = ∇×An(r). (B.5)

Calculating the Berry curvature for a particular closed surface, for example a torus, it can
be found that its magnitude is identical to that of the Gaussian curvature covered in the

159



ω [rad s−1]

−1 0 1
× 10−20E [J ]

1
× 10−20

0.50

T 500

250

0−0.5 0.5

1

0

p(E
)

0.8

0.2

0.6
0.4

E [J ]

Fermi-Dirac

Maxwell-Boltzmann distribution

−1 0 1
× 10−20E [J ]

1
× 10−20

0.50

T 500

250

0

1

0

p(E
)

0.8

0.2

0.6
0.4

−0.5 0.5

1

0

p(E
)

0.8

0.2

0.6
0.4

E [J ]

Fermi-Dirac distribution

Maxwell-Boltzmann
T 500

250

0

a b
T = 0 T > 0

E = 0

T = 0
E = 0

T > 0

Figure B.1: Thermal occupation: (a) Probability of finding a boson in an excited state
above the ground state (E = 0) as a function of temperature. At T = 0 all bosonic particles
reside in the ground state. (b) For fermionic particles, at T = 0 electronic states are
occupied to the Fermi-level EF = 0. As the system increases in temperature particles have
a non-zero probability of being found in an excited state. Occupancy of energy levels above
the Fermi-level ∼ kBT .

main text of Section 2.1.2 [66], where the Berry phase is equivalent to the anholonomy
angle [69]1.

B.2 Spectroscopy

The experimental data analysed in Chapter 6 is from Infrared (IR) spectroscopy, where
the IR range is normally understood to range from the red edge of the visible spectrum
(700 nm, ∼430 THz) to the edge of the microwave range (1 mm, ∼ 300 GHz), where the
longer IR wavelengths are designated as THz radiation. Both IR spectroscopy and Raman
spectroscopy are vital tools in probing the dynamics of materials and are often used to
complement each other. As described in Chapter 2, some phonons are either IR active or
Raman active, while others can be activated in both methods. I briefly summarise the two
methods here, as extra information for the reader.

Raman spectroscopy involves the inelastic scattering of photons (known as Raman scatter-
ing). A system is irradiated with light, and this light interacts with phonons, molecular

1The anholonomy angle (or defect angle) is the angular difference between the starting and final vectors
in the cyclic evolution.
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vibrations or other excitations in the system. This interaction results in a change in energy
of the incoming photons, and this energy shift gives information about the excitation modes
of the material.

While Raman spectra result from the scattering of light by excitations, IR spectra result
from the absorption, emission or reflection of light. In the case of the experimental data in
Chapter 6, absorption data is found.

While Raman spectra result from changes in polarizability of the system, IR spectra result
from changing dipole moments. Raman measurements can usually be conducted across the
UV, visible and IR regions, whereas IR spectroscopy is limited to infrared frequencies.

B.3 Choosing Gauges in electromagnetism

I use a couple of different gauges when discussing electromagnetism in this thesis - I
summarise them and their properties here.

Coloumb gauge

The Coloumb gauge (also known as the transverse gauge) is given by

∇ ·A(r, t) = 0. (B.6)

This gauge is often used if one wants to quantise the vector potential, but not the Coloumb
interaction. It also means that the potentials can be expressed in terms of instantaneous
values of the fields and densities, such that

φ(r, t) =
1

4πε0

∫
d3r′

ρ(r′, t)

R
, (B.7)

A(r, t) = ∇×
∫
d3r′

B(r′, t)

4πR
(B.8)

Lorenz gauge

The Lorenz gauge is given by

∇ ·A(r, t) +
1

c2

∂φ(r, t)

∂t
= 0. (B.9)

This gauge is unique in preserving Lorentz invariance (but note that the gauge is Ludvig
Lorenz, not Hendrik Lorentz). The Lorenz gauge leads to inhomogeneous wave equations
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for the potentials, such that

1

c2

∂2φ(r, t)

∂t2
−∇2φ(r, t) =

ρ(r, t)

ε0
(B.10)

1

c2

∂2A(r, t)

∂t
−∇2A(r, t) = µ0J(r, t). (B.11)

For time-harmonic potentials, Equation B.9 can also be reduced to

∇ ·A(r) = i
ωk

c2
φ(r). (B.12)

B.4 Beyond the electric dipole approximation

Throughout the work of this thesis I have worked in the electric dipole (E1) approxi-
mation. We recall from Section 3.4.1 that the interaction Hamiltonian has the form

Hint
β,k(r, t) =

e

me

√
~

2ωkV ε0

[
eβ · p aβ,ke

i(k·r−ωkt) + e∗β · p a†β,ke
−i(k·r−ωkt)

]
, (B.13)

For an electronic structure with centre of mass at r0 we can rewrite the exponential as

eik·r = eik·r0eik·(r−r0), (B.14)

and selection rules can be found by studying the matrix element

Vβ,i,j = 〈Ψf |eβ · peik·(r−r0)|Ψi〉. (B.15)

For electronic structures whose spatial expanse is much smaller than the wavelength of
irradiating light, we made the approximation that eik·(r−r0) = 1 + ik · (r − r0) + ... ≈ 1.
The matrix element can then be written as

Vβ,i,j = 〈Ψf |eβ · p|Ψi〉 ≈ imeωi,f〈Ψf |eβ · r|Ψi〉. (B.16)

However, we can go beyond the electric dipole approximation by including higher order
terms. Including the next term of the exponential expansion, we have that eik·(r−r0) ≈
1 + ik · (r− r0). The matrix element is then

Vβ,i,j ≈ imeωi,f〈Ψf |eβ · r|Ψi〉+ iωi,f〈Ψf | [k · (r− r0)] [eβ · p] |Ψi〉. (B.17)

For ease of notation we rewrite x = r−r0. If a transition |Ψi〉 → |Ψf〉 were to be forbidden,
such that the E1 contribution to the matrix element would be zero, the matrix element
then becomes

Vβ,i,j ≈ iωi,f〈Ψf | (k · x) (eβ · p) |Ψi〉. (B.18)
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From this we find that a forbidden transition is not really forbidden, but it would just take
place at a much slower rate than an E1 transition.

According to classical electromagnetism, k̂ = bβ×eβ , where bβ is the polarisation direction
of the magnetic component of the wave. We also note that L = x×p is angular momentum.
It can be calculated through some algebraic gymnastics that

bβ · L = (k̂× eβ)(x× p) = (k̂ · x)(eβ · p)− (eβ · x)(k̂ · p). (B.19)

It can also be calculated that

ime

~

[
Helec, (eβ · x)(n · x)

]
= (eβ · x)(eβ · p) + (n · x)((eβ · p)), (B.20)

where Helec is the unperturbed electron Hamiltonian first encountered in Section 3.4. Using
the previous three equations, we then arrive at the result that

Vβ,i,j =
iωi,f

2c
bβ〈Ψf |L|Ψi〉 −

meωi,f

2
eβ ·Qi,f · k, (B.21)

where

(Qi,f)j,k = 〈Ψf |xjxk − r2δj,k/3|Ψi〉, (B.22)

where r2 = xjxj. The two terms on the right-hand-side are usually treated separately, as
they can give rise to different selection rules. The first term governs magnetic dipole
(M1) transitions, while the second term governs electric quadrupole (E2) transitions.
However, in this system the selection rules for each term coincide, although they will result
in different transition rates.

For the spherical TINP, the M1 and E2 selection rules are as follows:

Result: M1 and E2 selection rules

The M1 and E2 selection rules for light propagating along the z-axis such that
k̂ = (0, 0, 1): For left-hand (LH) polarised light such that e = 1√

2
(1, i, 0),

∆s = 0, ∆(n+ |m|) = ±2, ∆m = −1 (B.23)

∆s 6= 0, ∆(n+ |m|) = ±1, ∆m = −1 (B.24)

For right-hand polarised light such that e = 1√
2
(1,−i, 0),

∆s = 0, ∆(n+ |m|) = ±2, ∆m = 1 (B.25)

∆s 6= 0, ∆(n+ |m|) = ±1, ∆m = 1 (B.26)
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a b

Δs = 0
Δ(n+ |m | ) = ± 2
LH : Δm = − 1
RH : Δm = 1

Δs ≠ 0
Δ(n+ |m | ) = ± 1
LH : Δm = − 1
RH : Δm = 1

Figure B.2: Selection rules beyond E1: Selection rules for left- and right-hand polarised
light for M1 and E2 transitions, which coincide.

B.5 Fermi’s golden rule

For many situations, the transition rates can be written in terms of photonic density of
states, although this is not always the case as will be discussed in Chapter 5. It should
also be noted that when explicitly calculated, it can be seen that stimulated transition
rates rely on the number of photons in the system, systems spontaneous transition rates
are independent on photon number. For many transitions, Fermi’s golden rule can be
employed,

Γi→f,β(r) =
2π

~
|Vi,f,β|2g(r, ωi,f), (B.27)

where g(r, ωi,f) is the photonic LDOS described in Section 3.7, and Vi,f,β is the matrix
element given in Equation 3.57. Writing the transition rate in this form relies on being
able to factorise the expectation value into separate contributions from the matrix element,
electric field spatial distribution and DOS. This is possible in free space and the 1D cavity,
as will be seen in Chapter 5, but in higher dimensions (such as the 3D cavity discussed in
Chapter 5, the transition rate cannot generally be factorised into this form. This was the
driving factor in using the method of spectral densities in this thesis. However, in many
situations, it is generally assumed that the maximal DOS modification is wanted, and so
results will often reduce to Fermi’s golden rule.

B.6 Cross-section, spectral density and transition rates

The transition rate between two states, Γi→f can be written in terms of the transition
cross-section, σi→f , such that

Γi→f = c

∫ ∞
−∞

dωn(ω)σi→f(ω). (B.28)
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For the situation where n(ω) = nδ(ω − ωi,f), this simplifies to

Γi→f = cnωi,fσi→f(ω). (B.29)

These quantities can also be linked to spectral density, where

Γi→f =
2π

~2

∑
β,k

∫
dωSi→f,β,k(ω)δ(ω − ωi,f), (B.30)

and so we can relate spectral density and transition cross-section by

σi→f(ω) =
2π

c~2

Si→f(ω)

n(ω)
δ(ω − ωi,f). (B.31)

B.7 Deriving the effective surface Hamiltonian

In Chapter 4 I find the effective surface Hamiltonian, Hsurf , via the projection of H‖ onto
the surface state |Φ〉 = α+|+〉+ α−|−〉. Hsurf , acts on (α+, α−)T , i.e.

Hsurf

(
α+

α−

)
=

(
〈+|H‖|Φ〉
〈−|H‖|Φ〉

)
. (B.32)

I do this for both prolate and oblate spheroidal nanoparticles. The symmetries of H‖ can
be used to simplify this task. We note that

H11
‖ = H33

‖ = −H22
‖ = −H44

‖ (B.33)

H12
‖ = H21

‖ = −H34
‖ = −H43

‖ (B.34)

H13
‖ = H31

‖ = H24
‖ = H42

‖ = 0 (B.35)

H14
‖ = H23

‖ = −(H32
‖ )∗ = −(H41

‖ )∗ (B.36)

By writing 〈+| = (a∗1, a
∗
2, a
∗
3, a
∗
4) and 〈−| = (b∗1, b

∗
2, b
∗
3, b
∗
4), we note the simplification that

a2 = −ia1, a4 = −ia3, a∗2 = ia∗1, a∗4 = ia∗3,

b2 = ib1, b4 = ib3, b∗2 = −ib∗1, b∗4 = −ib∗3.
(B.37)

We also set all m1 terms to 0. We can then write that

H++
surf = H−−surf = 0 (B.38)

H−+
surf = 2i (b∗3a3 − b∗1a1)H12 − 2ib∗1a3H14 − 2ib∗3a1H41 (B.39)

+ 2ib∗3H12a3 − 2ib∗1H12a1 − 2ib∗1H14a3 − 2ib∗3H41a1 (B.40)
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and

H+−
surf = 2i (a∗1b1 − a∗3b3)H12 + 2ia∗1H12b1 + 2ia∗1b3H14 + 2ia∗3b1H41 (B.41)

− 2ia∗3H12b3 + 2ia∗1H14b3 + 2ia∗3H41b1. (B.42)

From calculating these results explicitly, the results of Chapter 4 follow.

B.8 The Q factor

The Q factor (or Quality factor) of a resonant cavity can be described in terms of the
stored energy, such that

Q = 2π
Energy stored in cavity

Energy lost per cycle via cavity walls
(B.43)

By conservation of energy, the rate of change of stored energy, U , is equal to the power
dissipated via Ohmic losses2, such that

dU

dt
= −ω0

Q
U, (B.44)

where ω0 is a normal mode. The solution to this equation is given by

U = U0e
−ω0t/Q = U0e

−t/τ , (B.45)

where we define 1/tau as the cavity decay constant such that Q = ω0τ . The time-dependence
of the stored energy suggested that the electric field in the cavity will undergo damped
oscillations, such that

E(t) = E0e
−ω0t/2e−iω0t. (B.46)

A damped oscillation such as this does not consist of a pure frequency, but instead will be
composed of a superposition of frequencies centred around ω = ω0. Performing a Fourier
transform,

E(ω) =
1√
2π

∫ ∞
0

dωE0e
−ω0t/2Qei(ω−ω0)t, (B.47)

and so (as per the integral in Equation A.36),

|E(ω)|2 ∝ 1

(ω − ω0)2 + (ω0/2Q)2
. (B.48)

2Ohmic losses result in energy dissipation in the form of heat.
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This curve has a full-width at half-maximum equal to ω0/Q. I think it is useful to note
here that it is because Q is defined via energy that the electric field decays with a decay
constant of ω0/2Q, rather than ω0/Q (as U ∝ |E|2).

B.9 Spontaneous emission and Purcell effect in 1D free space

This topic is relegated to the appendix in order to keep Chapter 5 a bit more concise. It is
not strictly needed for the calculations in Chapter 5, but is useful if we want to calculate
the 1D Purcell factor. As for the 3D free space case given in 5.1.1, we begin with the power
spectral density

Si,f,β,k(ω) = e2 lim
T→∞

1

T

∣∣∣∣〈Ψf | ⊗ 〈1|Ẽβ,k(r0, ω) · r|Ψi〉 ⊗ |0〉
∣∣∣∣2. (B.49)

Everything is the same as the 3D case (apart from normalisation of the electric field) until
we need to sum over k states.

Γspon
i→j,β =

πe2

~Lε0

∑
k

ωk|〈Ψf |r · eβ|Ψi〉|2δ(ωi,f − ωk). (B.50)

Then, instead of integrating over a volume, we’re integrating over a length, such that the
space occupied by one state in k-space 2π/L is an infinitesimal length, ∆kz → dkz, such
that ∑

k

δ(ωi,f − ωk)→
L

2π

∫
L
dkδ(ωi,f − ωk) =→ L

2πc

∫
L
dωδ(ωi,f − ωk), (B.51)

and so

Γspon
i→f =

2παc

L

∑
β,m

sin2
(mπz

L

)
|〈Ψf |r · eβ|Ψi〉|2

4Qmω2
c

ω2
c + 4Q2(ωi,f −mωc)2

(B.52)

Γspon
i→j,β =

πe2

~Lε0
L

2πc
ωi,f |〈Ψf |r · eβ|Ψi〉|2 (B.53)

=
e2

2~cε0
ωi,f |〈Ψf |r · eβ|Ψi〉|2 (B.54)

A slightly strange interpretation of 1D space has to be taken here, where k is uni-directional,
but the electric and magnetic fields of the EM field are still perpendicular to it. This means
that the polarisation vectors are restricted to a single plane. Averaging in all directions for

167



polarisation thus results in the overall transition rate

Γspon
i→j =

e2

2~cε0
ωi,f

∑
β

|〈Ψf |r · eβ|Ψi〉|2 (B.55)

=
e2

2~cε0ωi,f
|〈Ψf |r|Ψi〉|2 (B.56)

Written in terms of α = 1
4πε0

e2

~c ,

Γspon
i→j =

e2

2~cε0
ωi,f

∑
β

|〈Ψf |r · eβ|Ψi〉|2 (B.57)

= 2παωi,f |〈Ψf |r|Ψi〉|2. (B.58)

Recalling the spontaneous transition rate in a 1D cavity,

Γspon
i→f =

2παc

L

∑
m

sin2
(mπz

L

)
|〈Ψf ||Ψi〉|2

4Qmω2
c

ω2
c + 4Q2(ωi,f −mωc)2

. (B.59)

we can calculate the 1D Purcell factor (in the middle of the cavity, for the fundamental
cavity mode) of

F1D =
Γspon

i→j,cavity

Γspon
i→j,free

=
8παcQω2

c |〈Ψf |r|Ψi〉|2

2παωi,f |〈Ψf |r|Ψi〉|2L
(
ω2

c + 4Q2 (ωi,f − ωc)
2
) (B.60)

=
4cQω2

c

ωi,f

(
ω2

c + 4Q2 (ωi,f − ωc)
2
)
L

(B.61)

For resonant frequencies, such that ωi,j = ωc,

F1D =
2Qλfree

πL
(B.62)

where λfree is the wavelength of light in free space.

Result: Spontaneous emission and Purcell effect in 1D

Spontaneous emission rate Γspon
i→j = 2παωi,f |〈Ψf |r|Ψi〉|2 (B.63)

Purcell factor F1D =
4cQω2

c

ωi,f

(
ω2

c + 4Q2 (ωi,f − ωc)
2
)
L

(B.64)

Resonant Purcell factor F1D =
2λfreeQ

πL
(B.65)
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B.10 Particle statistics

Bosonic systems (such as phonons, magnons, molecules etc) obey theMaxwell-Boltzmann
distribution (illustrated in Figure B.1a), while fermionic particles (such as electrons) obey
the Fermi-Dirac distribution. The energy to which particles can be excited is ∼ kBT .

B.11 Fano resonances

Fano resonances3 are the result of an interference between two scattering amplitudes,
one due the excitation of a discrete state (the resonant process) and one due to scattering
within a continuum of states (the background process). The processes should occur at
commensurate frequencies. Normally, a phonon would constitute the discrete mode and
the environment would constitute the broad, continuous mode. However, in the case of
the SToP mode, the surface state excitation is discrete, and the phonon mode is broad in
comparison.

Near the resonant energy, the background scattering amplitude usually varies slowly with
energy while the resonant scattering amplitude changes both in magnitude and phase
quickly. It is this variation that creates the typical, asymmetric line-shape of the Fano
resonance.

B.12 Experimental method for producing bismuth telluride nanoparticles

This experimental method is taken from the manuscript [6], and was contributed by M.
Sokolikova. I include it here as additional content for interested experimentalists.

In a standard synthesis, 114 mg of bismuth acetate (Bi(CH3COO)3, 99% Aldrich) and
3.5 mL of 1-dodecanethiol (DDT, 98% Aldrich) were mixed in a three-neck flask and heated
to 45◦C under vacuum and kept at this temperature until a transparent pale-yellow solution
is formed. Then the flask was flashed with nitrogen and heated to 60◦C and 6.5 mL of
oleylamine (OlAm, 70%, Aldrich) was quickly added. After 24 hours the as-prepared
bismuth nanoparticles were used without any further purification. For tellurisation 0.45 mL
of 1M trioctylphosphine telluride (TOP:Te) was injected at 60◦C into the solution containing
bismuth nanoparticles. The reaction mixture was kept at this temperature for 48 hours
until complete tellurisation and then annealed at 110◦C for 8 hours in order to restore
crystallinity. Thus produced Bi2Te3 nanoparticles were washed three times with ethanol
and then redispersed in chloroform. For THz measurements solvent was exchanged to
mineral oil.

3Named for Ugo Fano. His paper on the topic [219], is one of the highest cited papers in Physical
Review, owing to the ubiquity of Fano resonances in across scientific topics.
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Figure B.3: Bi2Te3 nanoparticle synthesis: (a) TEM images of Bi nanoparticles, which
are nearly spherical and of average radius 14.4 nm. (b) Successfully synthesized Bi2Te3

nanoparticles with a slightly rhombohedral shape and average radius of 17.5 nm. (c)
X-ray diffraction patterns illustrating the successful tellurisation of the Bi nanoparticles to
form Bi2Te3 nanoparticles. Figure modified from [6], published by The Royal Society of
Chemistry.
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C. Numerical methods

In this appendix I give a brief overview of the numerical methods used in this thesis.

C.1 Finite difference method for solving ODEs

We are interested in solving ordinary differential equations of the form found in Chapter 4,
such as

F (x)z′′(x) +G(x)z′(x) +H(x)z(x) = λ2z(x). (C.1)

In order to solve this equation numerically, we discretise x to create a series of equations at
points xi., and we can write z(x) as a vector, such that

z(x) =



z(x0)

z(x1)

z(x2)

...

z(xN−1)

z(xN )


. (C.2)

The equations can be reformulated as an eigenvalue problem of a single operator, such that

M(x)z(x) = Ez(x), (C.3)

where M(x) is an operator given by

M(x) = F (x)
d2

dx2
+G(x)

d

dx
+H(x). (C.4)

We can discretise M(x) by considering that

d

dx
z(xi) =

z(xi+1)− z(xi−1)

2∆x
(C.5)

d2

dx2
z(xi) =

z(xi+1)− 2z(xi) + z(xi−1)

∆x2
, (C.6)

where δx = xi+1 − xi is a small, constant interval. We can thus write terms as matrices
acting in the vector z(x), such that
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H(x) =



H(x1) 0 0 ... 0

0 H(x2) 0 ... 0

0 0 H(x3) ... 0

... ... ... ... ...

0 0 0 H(xN−1) 0

0 0 0 0 H(xN )


(C.7)

G(x)
d

dx
=

1

2∆x



0 G(x1) 0 ... 0

−G(x2) 0 G(x2) ... 0

0 −G(x3) 0 ... 0

... ... ... ... ...

0 0 −G(xN−1) 0 G(xN−1)

0 0 0 −G(xN ) 0


(C.8)

and

F (x)
d2

dx2
=

1

∆x2



−2F (x1) F (x1) 0 ... 0

F (x2) −2F (x2) F (x2) ... 0

0 F (x3) −2F (x3) ... 0

... ... ... ... ...

0 0 F (xN−1) −2F (xN−1) F (xN−1)

0 0 0 F (xN ) −2F (xN )


(C.9)

Combining all of these terms, we can then use standard linear algebra to find the eigenvalues
of the equation, E.

C.2 Fermionic rate equations from Monte Carlo simulations

In a typical atomic lasing system, the system of rate equations can be simply modelled
with a statistical model. In these systems, the initial condition of a single atom is given
by a single electron in its ground state, and the combined system of many atoms can be
treated as a non interacting system as the electrons in separate atoms do not interact.
However in the system of a TINP, an interacting system must be considered, as multiple
electrons in a single Dirac cone will participate in the system evolution. In order to correctly
capture the fermionic nature of this system, we use a probabilistic ‘hopping’ method which
allows electrons to traverse the system of energy levels according to the transition rates
but forbidding double occupation of levels, and then averaging over many runs to obtain a
statistical mean of energy-level occupation densities.
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We move to a Fock basis, in which the total wave function of the system can be described
by

|Ψ〉 =
M∏
i=1

⊗|ni〉, (C.10)

where M is the number of states involved in the lasing scheme. Each state obeys fermionic
occupation rules such that ni = 0 or 1. For a given time step dt, transition rates are
converted to probabilities pi→j = Γi→jdt� 1, where for transitions at the cavity frequency,
Γi→j ∝ n̄i,j and the rate will dynamically change as n̄ij as evolves via the dynamics.

The model is described below in pseudo-code.

I n i t i a l i s e s t a t e ( p a r t i c l e ba s i s )
I n i t i a l i s e s t a t e ( photon ba s i s )
Convert a l l t r a n s i t i o n r a t e s to p r o b a b i l i t i e s
for 1 : number_repeats
% Repeat and average to g i v e accura te mean o b s e r v a b l e s

for t=1:number_time_steps
for 1 : number_part ic les
% Ele c t r on i c s t a t i s t i c s

For p a r t i c l e i , i d e n t i f y which
t r a n s i t i o n s i−> j are non−zero

Convert t o t a l t r a n s i t i o n ra t e to p r obab i l i t y
Generate random number a to see
whether t r a n s i t i o n occurs

I f t r a n s i t i o n occurs , weight a l lowed t r a n s i t i o n s

Generate random number b to pick which
t r a n s i t i o n occurs

Pa r t i c l e i t r a n s i t i o n s to new s t a t e

% Photonic s t a t i s t i c s
i f cav i ty mode

i f absorpt ion , remove photon from mode
e l s e i f emiss ion , generate random number
to dec ide spontaneous or s t imulated
end

end
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Repeat for a l l p a r t i c l e s .
Check for mul t ip l e occupancy .
I f no mul t ip l e occupancy , s t a t e at next
time s t a t e = new s t a t e .

l eak cav i ty mode photons accord ing to Q f a c t o r

e l s e i f mul t ip l e occupancy has occurred , s t a t e
at next time s t a t e = old s t a t e .
end

end
end

The initial conditions are set by occupying states up to the desired Fermi level EF . For a
given time step, all electrons may transition between states with the probabilities calculated
from the relations given in Chapter 5. The number of photons in each mode is updated
accordingly, as photons are emitted and absorbed. At the end of the time step, it is checked
of the transitions have obeyed fermionic occupation rules (such that there is maximum
one electron in any given state). If the transitions have resulted in multiple occupancy
of any state, the time step is reset and the system required to undertake the step again.
When a physically allowed time step has been undertaken, the entire system updates and
progresses to the next time step. In this way, the system evolves whilst observing fermionic
occupation rules.

The coherent photons in the cavity will leak from the cavity at each time step, according
to the cavity time scale. The number of photons leaving the cavity is tracked, as if steady
state is achieved this will be used to calculate lasing rate.

A single evolution of the system gives a so-called quantum leap simulation, while averaging
the simulation over many iterations gives the average expected results of a single TQD, or
if multiplied by N , gives the result of N uncorrelated TQDs.

C.3 Lorentzian decomposition

In order to decompose the experimental absorption cross-section data in Chapter 6
using Lorentzian peaks, the Matlab peak-fitting programme Peakfit.m was used.

p e ak f i t ( s i gna l , center , window ,NumPeaks , peakshape )

Center: 2.39 THz. Window: 2.66 THz. Number of peaks: four. Peak shape: Lorentzian.
Error: 2.3% with three peaks, 0.241% with with four peaks, 3.4% with five peaks.
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