
Topological Plasmonic Chain with Retardation and Radiative Effects
Simon R. Pocock,*,† Xiaofei Xiao,† Paloma A. Huidobro,† and Vincenzo Giannini†,‡,§

†Physics Department, Imperial College London, Blackett Laboratory, London SW7 2AZ, United Kingdom
‡Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid,
Spain

*S Supporting Information

ABSTRACT: We study a one-dimensional plasmonic system
with nontrivial topology: a chain of metallic nanoparticles with
alternating spacing, which in the limit of small particles is the
plasmonic analogue to the Su-Schrieffer-Heeger model. Unlike
prior studies we take into account long-range hopping with
retardation and radiative damping, which is necessary for the
scales commonly used in plasmonics experiments. This leads
to a non-Hermitian Hamiltonian with frequency dependence
that is notably not a perturbation of the quasistatic model. We
show that the resulting band structures are significantly
different, but that topological features such as quantized Zak phase and protected edge modes persist because the system has
the same eigenmodes as a chirally symmetric system. We discover the existence of retardation-induced topological phase
transitions, which are not predicted in the SSH model. We find parameters that lead to protected edge modes and confirm that
they are highly robust under disorder, opening up the possibility of protected hotspots at topological interfaces that could have
novel applications in nanophotonics.
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Plasmonic systems take advantage of subwavelength field
confinement and the resulting enhancement to create

hotspots, with applications in medical diagnostics, sensing and
metamaterials.1,2 Arrays of metallic nanoparticles support
surface plasmons that delocalize over the structure and whose
properties can be manipulated by tuning the dimensions of the
particles and their spacing.3−6 In particular, 1D and 2D arrays
have significant uses in band-edge lasing7,8 and can be made to
strongly interact with emitters.9,10 Configurations of nano-
particle dimers have been shown to exhibit interesting physical
properties;11 in the following we consider a nanoparticle dimer
array in the context of topological photonics.
The rise of topological insulators, materials with an insulating

bulk and conducting surface states that are protected from
disorder, has inspired the study of analogous photonic and
plasmonic systems.12−23 Topological photonics shows exciting
potential for unidirectional plasmonic waveguides,24 lasing,25

and field enhancing hotspots with robust topological
protection, which could prove useful for nanoparticle arrays
on flexible substrates.26 Plasmonic and photonic systems
provide a powerful platform to examine topological insulators
without the complication of interacting particles and with
interesting additional properties like non-Hermiticity.27−32 The
lack of Fermi level simplifies the excitation of states, and the
tunability made available by the larger scale allows for the study
of disorder and defects in greater depth than electronic
systems.33−35 They also simplify the study of topology in finite
systems.36

One of the simplest topologically nontrivial models is that of
Su, Schrieffer, and Heeger (SSH),37,38 which features a chain of
atoms with staggered hopping. There are analogous photonic
systems such as zizag chains39,40 and the one-dimensional chain
of metallic nanoparticles with alternating spacing (see Figure
1a). This chain has been studied in the quasistatic (QS) limit,
where the dimensions of the chain are much less than the
wavelength, kd ≪ 1.41−43 In fact, when damping is neglected
and only nearest neighbors considered the one-dimensional
chain and the SSH model are physically equivalent. However,
the QS limit has been shown to be insufficient for describing
the band structures of equally spaced chains of nano-
particles44−48 whose radius and spacing are in the commonly
studied regimes for plasmonic metamaterials.49−51 Retardation
and radiative losses become increasingly significant for larger
particles, so these effects must be treated properly if we are to
understand the physics at experimentally realistic scales.
Recently, Downing and Weick took this into account using
an open quantum system approach.52

In the following work we present a treatment of the
staggered one-dimensional plasmonic chain that takes into
account retardation and radiative effects over long-range,
generating a natural 1D topological insulator model that
complements those already in the literature.53−56 The model
breaks chiral symmetry only trivially by adding an identity term
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to the Bloch Hamiltonian, which is non-Hermitian and has
frequency dependence. We calculate band structures and
compare to the QS approximation, showing that the system
is indeed still topologically nontrivial because it shares
eigenvectors with a chiral system. The transverse and
longitudinal modes are shown to have notably different band
structures, and in the transverse case it is shown that the Zak
phase is not always the same as predicted by the QS
approximation. In addition, we compare two methods of
calculating the Zak phase and further confirm that for inversion
symmetric systems it is possible to apply Zak’s original results
even in the case of non-Hermiticity. We go on to study the
effects of disorder on the topologically protected edge states,
which we find to be extremely robust.

■ TOPOLOGICAL PLASMONIC CHAIN
The plasmonic analogue of the SSH model is a chain of metallic
nanoparticles with alternating spacing, as in Figure 1a. Particles
have radius a and unit cells length d, with the spacing between
the A and B sublattices given by t = βd/2, where β acts as a

tuning parameter. If the spacing of the particles is large enough
compared to the radius of the spheres (t, d−t ≥ 3a) the
nanospheres can be treated as dipoles57 with dipole moments
pn, and the system is described by the coupled dipole equations:
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where G(rnj, ω) is the free space 3 × 3 Green’s dyadic, which
depends on the separation of the dipoles, rnj = rn − rj and
complex frequency ω.
The properties of the individual nanospheres are represented

by the polarizability α(ω), which in the quasistatic approx-
imation is given by
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where ϵ(ω) is the dielectric function of the metal, ϵ0 is the
permittivity of free space, and ϵB is the permittivity of the
background dielectric. This neglects radiative damping, which is
essential for the model to be consistent with the optical
theorem.58 This is addressed by the radiative correction,
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wavevector. Throughout this work we consider gold nano-
spheres using the Drude model,
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with ϵ∞ = 9.1, ωP = 1.38 × 1016 rad/s and 1/τ = 1.08 × 1014

rad/s,59 embedded in a material like glass with the dielectric
constant ϵB = 2.25. We deliberately exclude interband
transitions to make the effects of retardation more clear in
this study, although we do not expect this to affect the existence
of modes,17,41 as shown in the Supporting Information (SI).
We also do not include a substrate, which could modify the
dispersion relation of the plasmons,60,61 but is avoidable by
making use of a transparent substrate and index matching with
the surrounding material.10 Figure 1b shows the normalized
extinction cross section of a single nanoparticle, where the solid
lines are quasistatic and the dashed make use of the radiative
correction. For particles of 5 nm radius, the QS approximation
agrees with the radiative correction, but for particles with radius
20 nm radiative losses strongly affect the extinction cross
section by reducing and broadening the resonance over
wavelength. Particles with radii above 5 nm are well described
classically and do not require quantum size effects to be taken
into account.62

The chain is confined to the x-axis, so the longitudinal (x)
and transverse (y, z) parts of eq 1 decouple,
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where ν = x, y, z labels the orientation of the dipoles, and the
hopping between dipoles is scalar,

ω
π

=
ϵ

−G r
e

r
ikr( , )

2
4

[1 ]x nj

ikr

nj
nj

0
3

nj

(6)

Figure 1. (a) Diagram of the topological plasmonic chain, with
inversion centers of the chain marked by blue crosses. (b) Extinction
cross section of a single gold nanoparticle with radius 5 and 20 nm
embedded in glass, ϵB = 2.25, comparing the effects of the QS
polarizability against the radiative loss corrected polarizability. (c)
Dispersion relations for an equally spaced chain, β = 1, of
nanoparticles, comparing the results of the nearest neighbor QS
approximation (green dashed) and treating the full Green’s function
(blue solid), with light lines (black). ω is normalized to the surface
plasmon resonance, ωsp.
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with ω dependence contained within k.
Similar theory has been used in many studies of equally

spaced chains.63−71 However, unlike this work, previous studies
of the staggered chain have ignored Drude damping (1/τ = 0)
and taken the QS approximation with nearest neighbor
hopping to solve the system.41−43 This neglects retardation
by assuming that the dimensions of the chain are very small
compared to the wavelength kd ≪ 1. In this limit,
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where mν = 2 for the longitudinal case and −1 for transverse.
This removes all ω dependence from Gν and neglects the
intermediate and long-range dipolar interactions. The resulting
nearest neighbor, real, staggered hopping provides a close
analogue to the SSH model, apart from a transformation from
the eigenvalues to the frequency ω.
For gold nanoparticles embedded in glass the nonradiative

surface plasmon resonance ω ω= ϵ + ϵ∞/ 2sp P B corresponds
to the wavelength λsp = 504 nm. Figure 1c shows the dramatic
difference between the QS approximation and the retarded
treatment for an evenly spaced chain (β = 1) when d = 200 nm,
on the same order as λsp. Green dashed lines show bands
resulting from the QS approximation, which are therefore
symmetric around ωsp. The blue solid lines show the result of
including retardation and radiative effects. As has previously
been shown for the evenly spaced chain, retardation leads to
polariton splitting and discontinuities at the light lines k =
±kx,

44,46 which are completely absent in the QS approximation.
The difference is even greater for the transverse polarization
due to the extremely long-range ∼exp(ikr)/r term in the full
dipolar interactions. When including retardation and radiative
losses hopping becomes complex and long-range, giving rise to
a non-Hermitian topologically nontrivial Hamiltonian.
Bulk Bloch Hamiltonian. Topologically nontrivial systems

exhibit a bulk-boundary correspondence, where properties of
the bulk, here the Zak phase,72 predict the existence or absence
of edge states in the finite case.73 We study the bulk by way of
an infinite chain, where we relabel the two particles in the unit
cell A and B as in Figure 1a, apply Bloch’s theorem, and arrive
at the equations
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where ων k( , )x acts as an ω-dependent non-Hermitian Bloch
Hamiltonian that is, in matrix form,
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where the primed sum notation indicates that the sum does not
include the n = 0 term. The eigenvalues of ν are 1/α(ω), but
the band structure is given by ω. Topological properties of the
system are associated with the eigenvectors pν.

As is the case for any two band Hamiltonian, it is possible to
write in terms of the Pauli matrices {σi},

σ= + ·k g k I kg( ) ( ) ( )x x x0 (11)

with g0 and g = (gx, gy, gz) given by examining ν. The QS
nearest neighbor approximation has strict chiral symmetry, also
called sublattice symmetry, because there is no hopping from
sites A to A or from B to B. This can be expressed by the
equation σzHσ̂z = −Ĥ, which is true when g0 = 0 = gz. For the
retarded treatment, we still have gz = 0, but g0 ≠ 0, which we
will call “trivial” chiral symmetry breaking. Strict chiral
symmetry leads to eigenvalues 1/α(ω) that are symmetric
around 0, but in this trivially broken case they are symmetric
around g0(kx, ω). This system still has inversion symmetry in
the x-direction expressed by σ σ = −ν νk k( ) ( )x x x x , with
inversion centers marked by crosses in Figure 1a. This
guarantees that the band structure is symmetric in kx.
Calculating the band structure is a matter of fixing real kx and

finding corresponding complex ω numerically, to solve
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We discuss the implications of complex frequencies later. The
calculation is complicated by the fact that the elements of ν
are infinite, slowly converging sums. Faster evaluation can be
achieved by writing the sums in terms of polylogarithms and
the Lerch transcendent, detailed in the SI. These analytical
expressions show that, when β = 1, the off-diagonals of ν are
zero at the edge of the Brillouin zone (BZ), at kxd/2 = π/2.
Therefore, the eigenvalues are degenerate here, leading to a
band crossing as in Figure 1c. This signifies a topological phase
transition at β = 1.
Figure 2 shows numerically calculated band structures for

various choices of chain parameters d and a, displaying only the
real part of ω. These results are supported by full Maxwell’s
equations simulations in the SI. Blue dashed lines show the β =
1 case, and red solid lines show the β = 0.9 (identical to β =
1.1) case. For β ≠ 1, a complex valued gap opens at the edge of
the BZ, which increases in magnitude with increasing |β − 1|.
For small chain geometry (d = 50 nm, a = 5 nm) in Figure

2(a) the band structure is well approximated by the QS model
(yellow line), which makes a reasonable prediction of the band
gap but fails to predict the small deviations of the band
structure at the light line in the transverse case. Already some
asymmetry in Re(ω) exists due to the trivial breaking of chiral
symmetry.
Figure 2b,c demonstrates band structures with larger particles

and spacing with d ∼ λsp/ ϵB , well away from the QS limit.
Once again the polariton splitting and Re(ω) asymmetry are
present, as well as discontinuities at the light line, as in the
upper band for (b) longitudinal. The QS approximation, not
shown for clarity, is poor here and completely fails to predict
that a gap in Re(ω) does not always open, such as in (b)
transverse and (c) longitudinal. It is important to note that in
these cases there still exists an gap in Im(ω), such that there is
no band crossing and associated topological phase transition, as
discussed in the Complex Bands section. This means these
cases can still be topological or trivial.

Zak Phase. The relevant topological number is the Zak
phase, which for an Hermitian system like the SSH model is
given by
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However, the Hamiltonian ν is non-Hermitian, so we must be
more careful. The generalization of the Berry phase for non-
Hermitian systems,27 written in 1D for our system, is
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where pR and pL are normalized biorthogonal right and left
eigenvectors, solving eq 9 and its Hermitian conjugate,
respectively. It has been shown that chiral symmetry quantizes
this non-Hermitian Zak phase.32 As discussed previously, our
Hamiltonian breaks chiral symmetry trivially due to an
additional identity term g0. Since all vectors are eigenvectors
of the identity, the system shares eigenvectors with a chirally
symmetric counterpart (see SI) and the chiral symmetry result
quantizing the Zak phase applies for this system too. In fact, the
inversion symmetry of the system leads to quantization of the

Hermitian Zak phase as well,74 so that in this case both
calculations have the same result,

γ ϕ π ϕ π= − −d d( / ) ( / )
2 (15)

where ϕ is the relative phase difference between pA and pB. It
follows that γ is either 0 or π modulo 2π. Since topological
systems with chiral symmetry but no inversion symmetry can
exist,32 the topological nature here arises because the system
shares eigenvectors with a chirally symmetric system. When the
Zak phase is γ = π, we expect topologically protected edge
modes.
Figure 3a shows how ϕ(kx) changes across half the Brillouin

zone for the lower bands of Figure 2b. We only need half the

BZ because inversion symmetry gives us the other half, with
ϕ(−kx) = −ϕ(kx). We examine β either side of the topological
phase transition at β = 1. The longitudinal case has the same
property as the SSH model and QS approximation, that γ = π
when β > 1 and γ = 0 when β < 1.41 Surprisingly, the transverse
case is in the opposite topological phase to the longitudinal case
for the same choice of unit cell when it has the same β. Of the
example band structures given in Figure 2, all bands have the
same topological properties as predicted by the SSH model,
except (b) transverse. This implies that a topological phase
transition occurs for the transverse polarized modes between
(a) and (b) and again between (b) and (c).
We confirm these results by considering an alternative Zak

phase calculation. Xiao et al. showed that, in photonic systems,
the Zak phase is also given by the behavior of the electric field
at the inversion centers x = t/2, (d + t)/2 of the chain, at the
center (kx = 0) and edge (kx = π/d) of the Brillouin zone
(BZ).75 Considering the inversion center at x = t/2, if |Et/2(kx =

Figure 2. Band structures for the topological plasmonic chain for
various choices of geometric parameters d and a, with β = 0.9 or 1.1.
(a) Comparison of QS and retarded band structures near the QS
regime. (b) and (c) show band structures further away from the QS
regime and do not feature the yellow QS bands, which are similar to in
(a).

Figure 3. Representations of the calculation of the Zak phase γ,
considering the lower band from Figure 2b. (a) Change of ϕ across the
BZ modulo 2π. (b) Normalized electric field at the kx = t/2 inversion
center. The upper band has the same topological number as the lower
band in all examined cases.

ACS Photonics Article

DOI: 10.1021/acsphotonics.8b00117
ACS Photonics XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b00117/suppl_file/ph8b00117_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.8b00117


0)| and |Et/2(kx = π/d)| are both either zero or nonzero, we have
γ = 0. If |Et/2(kx = 0)| and |Et/2(kx = π/d)| are opposite (one is
zero while the other is nonzero), the Zak phase is given by γ =
π. The normalized magnitude of the electric field at x = t/2 is
shown across the BZ in Figure 3b, which agrees with the
calculations of Figure 3a. If we take the opposite inversion
center the Zak phases are switched. This method of
determining the topological nature of the system relies on
Zak’s results72 originally for Hermitian systems, but inversion
symmetry assures that any results for the Hermitian Zak phase
is identical here to the non-Hermitian Zak phase.
Through the treatment of retardation, we have found an

interesting phase transition for transverse polarized modes that
was overlooked in previous studies of the topological plasmonic
chain. We examine one of these phase transitions in Figure 4,

where the Zak phases for chains with fixed radius a = 5 nm and
β = 0.9, 1.1 are plotted with changing unit cell spacing, d. The
Zak phase predicted by the QS model is shown by the
horizontal dark gray line. Results obtained for transverse modes
are given by red circles, which agree with the QS prediction for
chain periods near the QS limit, then undergo a phase
transition somewhere between d = 90 and 100 nm in the gray
region. Consequently, it enters the phase opposite to the QS
prediction in the yellow region.
Topological phase changes occur when the product of the off

diagonal elements of the matrix ων k( , )x in eq 10 is zero,
causing the gap to close. Changing the radius of the particles a
only impacts the eigenvalue 1/α(ω), which could change where
the gap closes in d but not the existence of the gap closure. In
fact, the zeros can only happen for the transverse case due to
the third, long-range, term in the Green’s function in eq 7. We
study this by considering the Zak phase for a system which does
not include this long-range term, given by the blue crosses in
Figure 4. This case is equivalent to the longitudinal case, which

has the same Green’s function apart from a factor of −2, which
makes no difference to the closing of the gap. Here no phase
change occurs with changing d, as predicted by the QS model,
because the missing long-range term is responsible for the
phase transition. Finally, we observe that the off diagonals of

ων k( , )x are transformed into each other by mapping β 2
− β. If the gap closes for β it will also close for 2 − β, so that
phase transitions occur for β symmetric around β = 1, and are
opposite due to the phase transition at β = 1.
In the transverse case we have shown that when joining

suitably long chains with the same d and a, and with β
symmetric on either side of the topological phase transition β =
1, we still expect a topologically nontrivial interface featuring a
topological edge mode. The longitudinal case is less restrictive
due to the lack of retardation-induced phase transitions, as any
chains with β on opposite sides of β = 1 have opposite Zak
phase.

Finite Chains and Disorder. We now consider the
implications of the topological phases in finite chains. Figure
5a shows the eigenmodes of a finite chain with an example
choice of parameters so that there is a gap in Re(ω). The gap as
defined by the bulk modes (blue) increases symmetrically away
from β = 1, where there is a topological phase transition. As
expected, edge modes (yellow) appear in the gap when the Zak
phase γ = π.

Figure 4. Retardation-induced Zak phase changes with particle spacing
d, where the ratio β is fixed. The transverse gap closes somewhere in
the gray region and a phase transition occurs that is not predicted by
the QS nearest neighbor approach. Red circles are the calculation with
the full transverse Green’s function in eq 7. Blue crosses show the case
where the third long-range term is not included, equivalent to the
longitudinal polarized modes.

Figure 5. (a) Longitudinal eigenmodes of a finite 60 particle chain
with varying β. As predicted by the Zak phase, edge states (yellow)
exist when β > 1. (b) Comparison of the quasistatic and retarded finite
chain band structure for a choice of β = 1.2, showing edge modes in
the gap. (c) The real parts of the QS and retarded edge mode profiles
of the leftmost end of the chain. Modes in the gap are symmetric and
antisymmetric combinations of these mode profiles. Inset: log |E| field
outside of the particles for retarded left edge mode, excited by an
evanescent plane wave perpendicular to the chain. Dark red
corresponds to the weakest field, and bright yellow represents a
stronger field.
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Bulk modes can be identified by their mode profiles, which
are typically similar to normal modes of a chain, as in Figure 6b.

They can therefore be ordered by assigning a mode number n,
the number of times the sign of Re(pν) changes plus 1, and a kx
given by

π= − +
−

k
d N n

N N2
( 2) 1

( 1)x
(16)

where N is the number of particles in the chain,44 and N = 60 in
our calculations. These (kx, ω) pairs are plotted for an example
set of parameters in Figure 5b, where the finite QS
approximation (red circles) and retarded system (blue dots)
are compared. Bulk modes of the finite chain approximate the

Bloch bulk band structure in both cases, while the two edge
modes exist instead in the gap.
Figure 5c shows the dipole moments of a set of particles near

the edge, with a comparison between the QS edge mode
(yellow dashed) and the retarded edge mode (green solid). The
QS edge mode is fully supported on only the A sublattice due
again to chiral symmetry, while the retarded edge mode exists
on both sublattices. This is due to the long-range nature of the
hopping, forcing the retarded case to be further from the fully
dimerized limit than the QS case. This also explains why in the
QS case the edge modes have energies fixed to Re(ω) = ωsp but
the retarded edge modes’ energies are slightly different. The
edge modes decay exponentially into the chain, although the
retarded edge mode does so with a longer decay length. The
real part of px has a minimum at particle 5 before increasing and
then decreasing again, because of the longer range, out of
phase, dipole−dipole interactions, but the absolute value |px|
still decays monotonically on each sublattice into the chain as
illustrated by the inset log |E| field.
When the gap has no real part, edge mode frequencies have

an imaginary part so that they still sit in the imaginary valued
gap for γ = π, which we discuss later, and have similar profiles
to Figure 5c. For the transverse case the extremely long-range
dipole−dipole interactions ∼exp(ikr)/r appear to necessitate a
very long chain in order to distinguish an edge mode, which is
not accessible with our numerics. Therefore, we are restricted
here to studying longitudinal edge modes on finite chains.
One of the most relevant properties that arises due to

topology is the protection of the edge modes from disorder in
the axis of the chain. In Figure 6 we apply disorder in the form
of a random positive or negative shift to each particle’s position
in the chain axis, and measure the root-mean-square of the
disorder as a percentage of Λ = |β − 1|. When the disorder is
50% the system is within one standard deviation of the
topological phase transition, where the particles are equally
spaced.
In Figure 6a, a random choice of disorder is scaled smoothly

for different choices of β, causing the bulk modes (blue) to
enter and eventually close the gap at around 50%. These bulk
modes also become localized,76 with example mode profiles in
Figure 6b. The edge modes (yellow) separate in energy until
they are lost in the bulk, but survive for high levels (sometimes
greater than 20%) of disorder, especially for larger |β − 1|.
Figure 6c shows the mode profiles of the two edge modes for
two joined chains with 20% disorder and opposite Zak phases,
which illustrates the continued existence of the edge modes in
disordered systems. These disorder-protected edge modes act
as plasmonic hotspots, which can be positioned anywhere at the
interface of two chains with opposite Zak phase.

Complex Bands. In any system featuring losses or
retardation, one of the wavevector or frequency must be
complex.77 This is typically chosen depending on the physics of
the studied system. Here we discuss the importance of this with
regards to a plasmonic topological insulator.
For non-Hermitian solid state topological insulators the

eigenvalues are complex and the Bloch wavevector has real
components, making the choice of real kx and complex
frequency natural for comparison. Figure 7a shows the real
and imaginary parts of the Bloch band structure (red and green
lines) in the case where there is a crossing in the real frequency
axis, and the gap still has an imaginary part. We can visualize
these bands as curves embedded in three dimensions as in
Figure 7b. It is necessary to take into account both the real and

Figure 6. (a) Random disorder with the same seed is applied with
increasing strength along the x axis for three different choices of β. The
original bulk is marked in gray, bulk modes are blue and edge modes
are yellow. (b) Bulk modes of the of the system without disorder and
with disorder, using the same seed as (a). (c) Joined chains with
opposite |β − 1| values interfaced between particles 39 and 40.
Disorder uses a different seed to (a) and (b). Inset: log |E| field outside
of the particles, around the topological interface for the right edge
mode excited by an evanescent plane wave perpendicular to the chain.
Dark red corresponds to the weakest field, and bright yellow
represents a stronger field.
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the imaginary parts of the frequency when considering the
topological nature of a non-Hermitian system.78 Here the
complex gap allows for the unambiguous identification of each
band, which are labeled with different colors for clarity. This
then permits the calculation of Zak phases. For a finite chain,
we still find bulk modes (blue dots) which follow the bands and
edge modes (yellow dots) which sit in the complex valued gap.
All of the retarded and radiative band structures presented in

this work have imaginary components to the frequency, whose
inverse is equal to the lifetime of the mode. Lifetimes of edge
modes are comparable to those of the bulk modes and
plasmons localized to a single particle; for example, the edge
modes in Figure 7 have a lifetime on the order of 10 fs. The
presence of these imaginary parts suggest that it may be
necessary to use an evanescent wave to excite the modes.

■ CONCLUSION
We have presented a detailed study of the 1D topological
plasmonic chain beyond the quasistatic limit. We have
discussed how appropriately modeling the interaction between
the plasmonic nanoparticles by including the effects of
retardation and radiative damping, as well as losses in the
metal, leads to fundamental differences with its original
electronic analogue, the SSH model. In particular, the

plasmonic chain has a non-Hermitian Hamiltonian with long-
range hopping which breaks chiral symmetry in a “trivial” way.
This implies that, because the system has the same eigenvectors
as a chirally symmetric counterpart, it is still a topologically
nontrivial system that supports edge modes at interfaces
between topological phases.
While in the QS limit most of the behavior of the SSH model

is recovered, specifically real frequency band gaps opening both
for transverse and longitudinal modes and edge modes confined
to a single sublattice in the topological phase, we have shown
that as the size of the particles and their separation increases to
more experimentally appropriate scales a richer phenomenol-
ogy appears. In particular, the bulk band structures deviate
strongly from the QS prediction, and a band gap opening for
the dimerized chain does not always appear in the real
frequency axis. However, in these cases, there is still a gap in the
imaginary part of the frequency so that it is possible to calculate
topological invariants and define topological phases. We have
calculated the Zak phase and discovered remarkable retarda-
tion-induced topological phase changes for the transverse
modes, which are due specifically to the long-range term in the
Green’s function.
We confirmed that the edge states survive positional disorder

in the axis of the chain to a great extent. This hints at potential
uses for the 1D topological plasmonic chain in plasmonic
systems, which could take advantage of this robustness against
fabrication imperfections to design plasmonic hotspots.
Finally, we discussed the implications of non-Hermiticity and

complex valued frequencies which arise due to loss and
retardation. Although the real and imaginary parts of the
frequency ω have different physical interpretations, they are
equally important in determining the topology of the system.
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Topological Insulators; Springer International Publishing: Switzerland,
2016.
(39) Slobozhanyuk, A. P.; Poddubny, A. N.; Miroshnichenko, A. E.;
Belov, P. A.; Kivshar, Y. S. Subwavelength Topological Edge States in
Optically Resonant Dielectric Structures. Phys. Rev. Lett. 2015, 114,
123901.
(40) Solnyshkov, D. D.; Nalitov, A. V.; Malpuech, G. Kibble-Zurek
Mechanism in Topologically Nontrivial Zigzag Chains of Polariton
Micropillars. Phys. Rev. Lett. 2016, 116, 046402.
(41) Ling, C. W.; Xiao, M.; Chan, C. T.; Yu, S. F.; Fung, K. H.
Topological edge plasmon modes between diatomic chains of
plasmonic nanoparticles. Opt. Express 2015, 23, 2021−2031.

ACS Photonics Article

DOI: 10.1021/acsphotonics.8b00117
ACS Photonics XXXX, XXX, XXX−XXX

H

http://dx.doi.org/10.1021/acsphotonics.8b00117


(42) Downing, C. A.; Weick, G. Topological collective plasmons in
bipartite chains of metallic nanoparticles. Phys. Rev. B: Condens. Matter
Mater. Phys. 2017, 95, 125426.
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(54) Zhu, B.; Lü, R.; Chen, S. PT symmetry in the non-Hermitian
Su-Schrieffer-Heeger model with complex boundary potentials. Phys.
Rev. A: At., Mol., Opt. Phys. 2014, 89, 062102.
(55) Chen, B.-H.; Chiou, D.-W. An elementary proof of bulk-
boundary correspondence in the generalized Su-Schrieffer-Heeger
model. ArXiv e-prints 2017, arXiv:1705.06913.
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