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ABSTRACT: The plasmonic nanolens was proposed as a
deterministic method to achieve high field enhancements and,
hence, enable single molecule photonic devices, but exper-
imental results have failed to live up to these expectations, and
recent theoretical works have brought its long-assumed
advantages into doubt. To explore the limits of cascade field
enhancements, we consider possible quantum solutions
(“going small”) and use phononic materials at longer
wavelengths (“going large”). We find that entering the
quantum plasmonic limit to enhance the size ratio between
constituent nanoparticles is not a fruitful strategy, as the increased electron-surface scattering decreases the field enhancement by
over an order of magnitude. Using larger nanoparticles is limited in metals by retardation, but using localized surface phonon
polaritons, which can be excited in polar dielectrics, is an effective strategy due to the lower energy phonon frequency and high
quality factor. We compare the nanolens against the more usual dimer configuration and find that the superior geometry depends
crucially on the material used, with noble metal nanolenses unlikely to offer better performance to equivalent dimers. In contrast,
SiC nanolenses can offer a larger maximum field enhancement, up to 104, compared to the corresponding dimer configuration,
suggesting that future endeavors in constructing nanolenses should be based on polar dielectrics. This could have wide-ranging
implications for IR/THz surface-assisted spectroscopies.
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Research in plasmonics has ushered in a new era of precise
control over light in subdiffraction volumes.1 One of the

most famous examples of this is the nanolens, first proposed by
Li et al. in 2003,2 where a finite chain of self-similar metallic
nanospheres, which support localized surface plasmons (LSPs),
are used to concentrate light to a ”hot spot” via a cascade effect.
Enhancements on the order of 103 were predicted, which is
desirable for applications in sensing,3 energy conversion,4

nonlinear plasmonics,5 and surface-enhanced Raman spectros-
copy (SERS)6 (with potential for single molecule detection),
among others. Despite the complex structure, there has been a
number of experimental realizations7−15 and continuing efforts.
For instance, silver nanolenses self-assembled by DNA origami
scaffolds have been recently demonstrated.16

The original proposition2 for the nanolens was formulated
within the quasistatic regime, which limits the size of the
constituent nanoparticles to below a few tens of nms for
plasmonics in the visible. In subsequent work,17,18 full
electrodynamic simulations have shown that retardation effects
limit the achievable field enhancement (FE) considerably.
Thus, it seems sensible to stay within the electrostatic regime
when designing a nanolens, but a large size difference between
the nanoparticles is essential for a strong nanolensing effect.
Unfortunately, this is experimentally difficult to realize. Further,
for nanoparticles less than about 10 nm in size, nonlocal effects

start to become important19−24 and will shift the LSP
resonance and decrease the maximum FE achievable. Non-
locality in small nanoparticles is a consequence of the finite
extent of the electronic wave functions which results in a
smeared-out screening charge at metallic interfaces, rather than
the infinitesimally thin layer assumed by classical electro-
magnetism. To describe this within the framework of classical
electromagnetic methods, a spatially dispersive longitudinal
dielectric function is necessary. Nonlocal effects are also
important for small gaps where it leads to effective increase
in the separation of the particles,23,25 also reducing the FE. For
very small particle sizes further quantum effects, such as the
electron spillout, may become relevant.26 Even the atomic
structure may be important to include.27 If the system size is
small enough, ab initio quantum mechanical calculations can be
performed that automatically take into account nonlocal effects,
this is known as quantum plasmonics.28,29 Recently, it has been
shown that few-atom systems can support large FEs,27,30,31 and
are surprisingly well-explained by classical plasmonic mod-
els,32,33 which has led to the concept of the quantum plasmonic
nanoantenna.34 Such structures could have applications in
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nanolocalized photochemistry where the large field gradients
can induce nondipole transitions.
Nonlocality can be modeled via the ingenious method of Luo

et al.,22 where it is mimicked, in local calculations, by the
inclusion of a thin (relative to the metal’s skin depth) fictitious
dielectric boundary layer over the metal. This model has been
shown to accurately describe the blue shift of the LSP as well as
the smearing of the electric field at boundaries and allows
modeling of nonlocality within the computationally simpler
local framework.
For nanoparticles smaller than the mean free path, there is an

additional surface scattering contribution (also known as
Kreibig or Landau damping), which can be simply added to
the bulk damping term according to the Matthiessen’s rule. The
size-dependent term is usually written in the form35

γΔ =R A( ) v
R

F , where A is a parameter on the order of unity,

but there exists considerable uncertainty in its value that is a
consequence not only of experimental difficulties, but also size-
dependent contributions from other sources such as phonon−
plasmon coupling,31,36 structural phase transitions,37 and
adsorbate-induced damping.38 There have been a number of
theoretical39,40 and experimental41 works on this topic. Note
that the surface scattering model is only a valid picture for
symmetrical systems such as the sphere35 and spherical shell
structures42 and is not easily generalizable to more complicated
geometries.
In this work we perform a study of how retardation and

nonlocality limits the nanolensing effect and explore the
achievable FEs in the classical and quantum limits. We perform
an in-depth study of sodium which, due to its simplicity and
similarities to the free electron gas, make it ideal for quantum
calculations. We consider the effects of nonlocality (i.e., a
spatially dispersive longitudinal dielectric function due to
quantum effects) and surface-scattering separately and explore
the contribution of each in limiting the cascade effect. We find
it is the surface scattering that severely limits large FEs in self-
similar spherical nanolenses rather than spatial dispersion. We
consider the effects of the surface scattering and nonlocality
separately but it must be understood that they are two faces of
the same coin, namely, a classical representation of a quantum
phenomena.
We also consider more realistic plasmonic metals: gold,

silver, and aluminum, as well as the polar dielectric silicon
carbide (SiC), which supports localized surface phonon
polaritons (LSPhPs)43 and show how a suitable choice of
material and the wavelength regime of operation can lead to
extreme nanolensing. Further, we compare the nanolens system
against dimers of equal volume for silver and SiC. Somewhat
surprisingly, we find no benefit of using a silver nanolens
compared to the equivalent dimer geometry. In contrast for
SiC, we find a substantial benefit of using the nanolens
geometry, over a range of geometrical parameters, and find
massive FEs approaching 104. This leads us to the conclusion
that the cascade effect is more suitable for the IR/THz region,
where the high quality factor of polar dielectrics and the large
size range at which the quasistatic approximation holds leads to
nanolens operating close to the idealization originally
envisioned by Li et al. and FEs orders of magnitude larger
than what can be achieved with metal-based nanolenses.

■ RESULTS AND DISCUSSIONS
Local Calculations for the Sodium Nanolens. We begin

by exploring the role of the constituent nanoparticle sizes in a
nanolens within the local approximation (in this section we
ignore nonlocality) using the boundary element method
(BEM).44−46 Despite the immense interest in the plasmonic
cascade mechanism, there has been few detailed studies of the
huge parameter space available to modify the near-field
response. In Figure 1a, inset, we show the system to be

studied. We use the original geometric progression idea of Li et
al.:2 the smallest particle has a radius R3, the medium particle
has R2 = κR3, and the largest particle R1 = κ2R3. Furthermore,
we denote the smallest gap as g23 and the larger gap will be g12
= κg23. The nanolens concept assumes κ ≫ 1, so that the
backcoupling of a sphere on its larger neighbor is only a small
perturbation.2 The largest particle acts as an antenna, coupling
with the incident light via the dipole mode, and then couples
with the higher order modes of the smaller spheres, which can
squeeze the light into small volumes.47 We remark that we
enforce this self-similar structure for simplicity but there is no
guarantee that it leads to the strongest FEs possible. To explore
the FE, we measure the electric field 0.3 nm away from the
smallest nanoparticle in the gap between the smallest and
medium nanoparticle. Unless otherwise specified, we set the
smallest nanoparticle’s radius to be 0.94 nm (which
corresponds to a closed shell Na92 cluster) and the smallest
gap to be 1 nm, which it approximately the closest gap size one
can achieve before electron tunnelling between the nano-
particles can occur (which will limit the maximum FE via short

Figure 1. (a) Maximum field enhancement for a sodium nanolens (R3
= 0.94 nm and g23 = 1 nm) for varying κ within the electrostatic
approximation (blue) and the full retarded solution (red). As well as
the boundary element method solution (crosses), also the generalized
Mie theory result is shown for comparison (circles). Shown inset is a
schematic of the nanolens studied and the definition of the geometry
parameters used in this work. (b) Maximum field enhancement for
varying smallest nanoparticle radius (R3) for different κ. (c) Same but
for varying smallest gap size (g23). For all these results, the field is
measured 0.3 nm away from the smallest sphere surface in the gap g23.
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circuiting and we do not account for this, it could be included
within a classical framework using the quantum corrected
model48). In Figure 1a, we show a sweep over κ for both
electrostatic and full retarded BEM simulations and show the
maximum FE over the wavelength range 200 → 500 nm.
Unsurprisingly, for low κ (≲4), the electrostatic approximation
works well due to the small size of the structure, but already for
κ = 4 (which corresponds to the largest particle having a size R1

= 15 nm), there is a noticeable discrepancy. For larger κ, the FE
continues to grow with increasing particles size within the
electrostatic approximation, in contrast the retarded calcu-
lations show a decrease in EM enhancement with increasing κ
as a result of radiative loss and shift of the plasmon resonances
for the larger nanospheres. Note that these maximum electric
field values may correspond to different spectral positions as
the near field resonance will shift in frequency for different
geometrical parameters. To confirm our results, we perform a
separate calculation using the generalized Mie method
(GMM)49 and find excellent agreement with the BEM. The
results clearly show that to achieve strong nanolensing it is
desirable to simultaneously have large κ and be within the
electrostatic approximation, but this is conflicting requirements
and leads to an optimum FE for a given κ.
In Figure 1b, we show the role of the smallest nanoparticle

size (R3) on the maximum FEs achievable for different κ, one
can clearly see that the largest FEs are achieved for
simultaneously large κ and small R3. This is a consequence of
ignoring nonlocal effects and will not be the case if quantum
effects are included. Interestingly, for certain values of R3, one
finds that larger κ is not always advantageous. For instance, for
R3 = 5 nm, the κ = 2 nanolens max FE is 2.7× larger compared
to the κ = 4 case; a larger κ is not always best! Similarly, Figure
1c shows the role of the gap size g23 and reveals, for larger gap
sizes, it may be preferable to use a smaller κ. Together these
results reveal the complicated interference effects at play that
are captured by the full Maxwell’s equations, but not by simple
electrostatic models, and illustrate the need for careful

modeling of a nanolens to ensure an optimum choice of
parameters is chosen.

Effect of Nonlocality on a Sodium Nanolens. We now
include the effects of nonlocality using the local analogue model
of Luo et al.22 within the BEM. Our findings in the last section
revealed that it is desirable to choose a small R3 and large κ, it is
interesting to see how this breaks down with quantum effects
included. For any practical system, a full numerical quantum
calculation is clearly infeasible due to the large size so we make
use of a number of approximations to model quantum effects.
As the smallest sphere is well within the quantum limit (R3 < 1
nm), we use the spherical jellium model within the local density
approximation-TDDFT formalism, which provides a good
description for closed shell clusters, to describe the optical
response of the individual smallest nanosphere. This provides
results accurate to within a few tenths of an electronvolt in
comparison to experimental results.50 We find the TDDFT
result does not agree well with the nonlocal model at these sizes
for individual nanoparticle optical response, the nonlocal result
can be “corrected” following the prescription of Teperik et al.23

Performing the TDDFT calculation allows an estimation of the
electron spill out not possible relying on quasi-quantum
nonlocal models and allows modeling of nanolenses down to
the quantum limit.
In Figure 2a we show the FE for a sodium nanolens of R3 =

0.94 nm, g23 = 1 nm, and κ = 4 for four different models. The
first model is purely local as used in the last section. The second
model is local but with surface scattering contribution included
in the damping as well as an electron spillout correction to the
plasma frequency provided by the TDDFT calculation. Note
that for the smallest sphere Na92 we use an experimental value
of 0.42 eV50 for the damping rather than the Kreibig formula,
which will breakdown at the smallest scale. Sodium is well
modeled by a free electron gas and as ωP ≫ γ, where ωP is the
plasma frequency and γ is the Drude damping parameter, we
may take the plasmon linewidth to be equal to γ. The third
model is a nonlocal calculation with both an electron spillout
correction and a correction to fix the incorrect value of the

Figure 2. (a) Field enhancement for a nanolens (R3 = 0.94 nm, g23 = 1 nm, and κ = 4) within the four models described in the main text. (b)
Extinction cross section for the individual nanospheres for different models; also shown (in green) is the result for the noncorrected nonlocal model.
For the smallest nanosphere, the local and nonlocal models with broadening included are multiplied by 10 for clarity. The inset shows the TDDFT
result for Na92 cluster, where S(ω) is the dipole strength function. (c) Maximum field enhancement for a range of κ. (d, e) Field profile (logarithmic
scale) within the local and nonlocal approximation at the max FE.
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Feibelman parameter for alkali clusters.23,51 The noncorrected
hydrodynamic model predicts the screening charge inside the
metal surface leading to a negative Feibelman parameter, this is
contradiction to full quantum calculations and experimental
results. The plasma frequency can be corrected as

ω ω δ= − Δ −⎜ ⎟⎛
⎝

⎞
⎠R R

1SP SP
nonloc

(1)

where R is the nanosphere radius, Δ is the position of the
induced charge relative to the edge, and δ is the spillout
length.23 The local results can be similarly corrected

ω ω= − δ( )1
RSP SP

loc , which is done in model 2. Both quantities

are on the order of an Å so we will take δ ≈ Δ and fit according
to the TDDFT simulation for a Na92 sodium cluster. We find
that a value of δ = 0.12 nm gives a good fit to the quantum
simulation, this agrees fairly well with the experimental value of
0.145 nm.52 The fourth model is a nonlocal calculation with the
correction and the surface scattering contribution to the
damping. Note that the δ parameter is calculated from the
single Na92 cluster and that value is used for the correction for
all the spheres in the nanolens.
By considering these four models, we can explore the

contribution from the various small size effects on the FE. In
the local model, we find a number of peaks due to a
complicated plasmon hybridization between the three particles.
Interestingly, compared to the individual nanosphere response,
the large FE response is rather broadband; over a range of
about 50 nm a large FE of over 1000 is possible. It is also worth
remembering that we are only recording the field at one point
so there may be large FEs at other points not captured by these
results. We find that the nonlocal model with no broadening
leads to a redshift (due to electron spillout) and a reduction in
the maximum FE to about 40% of the local result, there is also a
smoothing out of the number of peaks visible. For both models
2 and 4, there is a serious reduction in the FE by over a factor
of 10 due to Landau damping, such a reduction means that the
nanolens gives no benefit over ordinary individual nanospheres
and dimers that offer FEs on the order of Q and Q2

respectively,47 where Q is the quality factor and is on the
order of 10 for typical plasmonic metals near the LSP
resonance. This leads us to conclude it is the increased
damping via surface scattering that severely limits the cascade
FE rather than the nonlocal shift of the resonances.
To further understand these results we can analyze the

optical response of each individual nanosphere. In Figure 2b,
we show the extinction cross section,53 for each model, of the
individual nanoparticles in the κ = 4 system. Also shown (in
green) is the noncorrected nonlocal model for comparison. We
can see for the largest particle (R = 15 nm) that, somewhat
surprisingly, retardation is already important and shifts the
resonance to lower energies, at smaller wavelengths we can see
a weak higher order mode beginning to form. At all three sizes,
we can see that the noncorrected nonlocal model incorrectly
predicts a blueshift. The corrected models in contrast show a
redshift which is a consequence of the electron spillout,
naturally this shift is smaller for larger nanoparticles. For some
other metals, such as silver, the nonlocal shift is toward higher
energies due to the dynamical screening of d-electrons51 and
the noncorrected nonlocal model will be more accurate,
although this should be regarded as a lucky coincidence. It is
interesting that for the 15 nm sodium nanoparticle that both
retardation and quantum effects have a visible effect, this hints

there is a size regime where fully retarded and quantum
calculations are necessary using models such as the recently
developed quantum hydrodynamic model.54 In the inset of
Figure 2b, we show the jellium TDDFT result for Na92, where S
is the dipole strength function, we use an artificial 0.1 eV
broadening. We find close to 3 eV a prominent LSP is present,
at lower broadening it is possible to see that in fact the peak is
fragmented via interactions with single particle excitations. Also
present is a Bennett surface plasmon and the volume plasmon
at higher energies,28 these modes are not included in the local
and nonlocal models used. The SPP is red-shifted compared to
the classical result due to the soft confining potential.
In Figure 2c, we show the max FE for the four different

models over a range of κ. We see that the trends from Figure 2a
continue for different values of κ. Interestingly at larger κ, the
surface scattering role in decreasing the FE is increased; this is a
consequence of the smaller particle not contributing to the
cascade effect, while the larger two spheres begin to behave
purely classical; in effect, the system behaves as an asymmetric
dimer and we can expect FEs on the order of Q2 rather than Q3

if surface scattering is not included.2 We also show a
logarithmic plot of the FE for the max FE wavelength at κ =
4 within the local (model 1) and nonlocal corrected (model 4)
in Figure 2d and e, respectively. The local result shows that the
largest FE is near the smallest sphere in the gap g23, this agrees
with what was found in the original work on the nanolens.2 In
contrast, the FE spatial profile for the nonlocal models shows
only a small FE in the gap with the largest fields found solely
within the smallest nanoparticle, this illustrates a breakdown of
the cascade effect.
It seems from these results that going smaller is not an

effective strategy for building plasmonic cascade devices.
Recently, similarly drastic reductions (up to 7×) from
nonlocality have been shown for the fluorescence enhancement
of a dipole near a gold nanoparticle.55 We emphasize that the
inclusion of electron tunnelling, a negligible effect at these gap
sizes, would only further limit the FE. It is worth stressing that
nonlocality is highly dependent on geometry; for instance, thin
metallic nanoshells could offer superior performance for
ultrasmall nanolenses. Experimental results have shown that
20 nm thick gold nanoshells show no additional broadening.56

This has been backed up by theoretical calculations within the
random phase approximation, which have shown Landau
damping decreases with decreasing nanoshell thickness.57

Local Calculations for Gold, Silver, Aluminum, and
Silicon Carbide. In the preceding discussions, we have seen
the detrimental effects of retardation and nonlocality on the
plasmonic cascade effect. To explore different strategies for
achieving large FEs, we now consider the effect of the material.
We study the effects of changing κ for more typical plasmonic
metals: silver, gold, and aluminum. We also look at the polar
dielectric SiC which, within the Reststrahlen band that is
located in the mid-IR between the longitudinal and transverse
optical phonons, behaves as an optical metal and supports
LSPhPs.43 The low loss and high Q (which can be over an
order of magnitude larger than for noble metals, this is because
the nonradiative loss is determined by phonon−phonon
scattering rather than electron−electron scattering in metals)
makes polar dielectrics suitable for use in a IR/THz nanolens.
Here we study the maximum FE over a range of κ; for
simplicity, we use a local model as we now set R3 = 5 nm and
g23 = 3 nm, which are easier for experimental realization and are
similar to the geometry used in the original paper by Li et al.2
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In Figure 3 we show the maximum FE 0.3 nm away from the
smallest nanosphere. We find that gold, the most commonly

used plasmonic metal, has the lowest maximum FE: always
below 100. This is a consequence of interband transitions close
to the plasmon resonance, which limits the quality factor. A
more optimum nanolens could be constructed for gold by
structuring (for instance into an ellipsoid or rod shape) so that
that the LSP is shifted to larger wavelengths. Aluminum exhibits
higher FEs and is useful for achieving large FEs in the UV.
Silver is a good choice for achieving large FEs due to its large Q
for a metal (approximately an order of magnitude larger than
gold at the plasmon frequency43). Of the four materials, SiC
shows the largest FE due to its high Q combined with a lack of
retardation loss. In contrast to the monotonically increasing FE
with κ for SiC, the metals show a more complicated variation
with κ (similar to what is seen for sodium in Figure 1a), which
is a hallmark of retardation effects. This is confirmed by
comparison with an electrostatic calculation for SiC, which is
very similar to the full retarded results. This is a consequence of
the low frequency of the SiC LSPhP as compared to the LSP of
the metals. The electrostatic approximation holds for a
nanosphere, at the resonance, if |√ϵ|2πR/λSPhP ≪ 1,53 which
for SiC is found to be around a micron; hence, for κ = 4, where
the largest sphere radius is 80 nm, this is very well satisfied still.
In comparison, Al, which has a high frequency SPP, very
quickly deviates from the electrostatic approximation for very
small particle sizes. This suggests that the nanolens concept is
more viable for applications in the IR/THz, where the
electrostatic approximation holds at larger sizes. Note that
the maximum FE is highly sensitive to the material data used, as
shown by Pellegrini et al., where the maximum FE was shown
to change by a factor of 5, depending on the experimental data
used.58

The use of SPhPs for the nanolens cascade effect offers an
alternative to using LSPs and should lead to larger FEs,
although one must work at longer wavelengths in the IR/THz.
Fortunately, this is a window of the electromagnetic spectrum
that has generated a huge amount of interest, it coincides with
vibrational and rotational transitions of molecules.43 Similar
results, using plasmons, may also be obtained in this spectral
region for doped semiconductors59 and graphene.60 The FE
values we have obtained for the SiC nanolens are upper bounds
as we have not included any nonlocal or surface scattering
corrections; we expect for the systems studied here that such
effects will be small and should compare favorably to metals.
The flat dispersion of optical phonon in the long wavelength

limit leads to a low group velocity on the order of ∼104 m/s for
polar crystals; this gives, despite the relatively long scattering
time of around ∼102 ps, a short mean free path on the order of
10 nm. Furthermore, quantum corrections can be expected to
be negligible due to an absence of free carriers.

Nanolens versus Dimer. We now comment on the
suitability of the cascade effect to achieve large FEs in
comparison to the more usual dimer setup. Recently it was
suggested by Pellegrini et al.58 that there are no significant
improvements achieved with self-similar nanolenses as
compared to plasmonic dimers of equal or less total volume.
This was a surprising result but was only tested for a single
nanolens geometry; as shown earlier for sodium, the nanolens
geometry can vary in a nontrivial fashion for different
geometries. Here we explore a range of κ for both silver and
SiC. For a fair comparison, we enforce the dimer volume to be
equal to the equivalent nanolens for a given κ so that Rdimer =
((R1

3 + R2
3 + R3

3)/2)1/3, and the gap is the same as the smallest
gap (g23) of the nanolens. We measure the field in the middle of
the gap for the dimer. There is some arbitrariness when
defining a suitable comparison between the dimer and the
nanolens; we choose to fix the volume as many physically
relevant quantities depend on it, such as the dipole moment
and absorption cross section of a sphere. Furthermore, if the
volume is not fixed, then the difference in volume between the
nanolens and the dimer will change with κ; hence, an analysis
based on changing κ would be less meaningful.
In Figure 4a and b is shown the maximum FE over a range of

κ for a silver nanolens and the equivalent volume symmetric

dimer for the electrostatic approximation and full retarded
solution, respectively. We find for silver that the findings of
Pellegrini et al. hold for all geometries considered in the
electrostatic approximation and all, except at κ = 5, for the full
retarded calculation. Our work indicates that the nanolens
geometry holds no significant advantage over the dimer system
in the case of silver for exciting strong FEs. While more work is
needed over a larger parameter range and different metals, this

Figure 3. (a) Maximum field enhancement, in log scale, for silver,
gold, aluminum, and silicon carbide for different κ. The geometry is R3
= 5 nm, g23 = 3 nm. (b) Field enhancement against wavelength for the
κ = 4 geometry, with the SiC result multiplied by 1/10 to allow
visualization.

Figure 4. Maximum field enhancement of silver nanolens and dimers
for different κ calculated within the electrostatic approximation (a) and
full retarded solution (b). The geometry parameters are R3 = 5 nm and
g23 = 3 nm. (c, d) Same but for silicon carbide.
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does suggest that the huge amount of work in search for large
FEs with nanolenses built of noble metals may be wasted effort
when much simpler dimers are preferable. What is most
surprising, also noticed by Pellegrini et al.,58 is that the dimer
remains superior within the electrostatic approximation as well
(Figure 4a). Thus, it is not retardation effects that limit the
nanolensing effect, rather, it is a limitation of the material.
In contrast, for SiC (see Figure 4c,d) we find that the

nanolens become increasingly superior to the dimer for larger
κ: at κ = 6 the nanolens geometry leads to a 29% larger FE. The
suitability of SiC for nanolensing is a consequence of being well
within the electrostatic limit at these sizes, combined with low
material loss (large Q). The former being confirmed by the
electrostatic results (Figure 4c) being approximately equal to
the retarded results (Figure 4d). Note that we expect the
nanolens to be further superior to the dimer for larger κ than
shown in Figure 4, where we restrict ourselves to κ ≤ 6; the
BEM calculations become increasingly difficult to converge as
the size ratio between the constituent spheres increases. To
confirm this intuition, we have performed an additional
calculation (using the multisphere T-matrix code by Mackowski
and Mishchenko,61 which is able to achieve convergence for
these challenging geometries) for a κ = 10 nanolens (see Figure
5a) and find the nanolens geometry has a 82% improvement of

the maximum FE compared to the equivalent volume dimer. By
using SiC structures, we can approach massive FEs of 104,
which corresponds to an intensity enhancement of 108 and the
potential for deterministic SERS enhancements of 1016. This
demonstrates that polar dielectrics are a suitable material for
constructing extreme-cascade nanophotonic devices. The inset
of Figure 5a shows the maximum FE for κ from 6 to 10 for both
the dimer and the nanolens and shows that the nanolens
become increasingly superior for larger κ, continuing the trend
from the BEM calculation shown in Figure 4d. The drop off in
FE increment with increasing κ for the dimer is presumably due
to growing retardation loss; for large enough κ, a similar drop
off will be seen for the nanolens. Interestingly, the spectral
information in Figure 5a shows that the strongest FE occurs for
a narrow single peak and we have found this to be an hallmark
of strong nanolensing, this is in contrast to the dimer which has
multiple peaks due to mode hybridization. We have confirmed
that the response of the system is down to the material
resonance rather than a pure geometric resonance by
calculating the FE for a silver nanolens in the same wavelength
regime as for the SiC nanolens (10 → 13 μm), where the silver
acts, to a good approximation, as a perfect electrical conductor,
and we find only a small FE on the order of 10.

To understand the results shown in Figure 4 further, we
model a fictitious Drude model (based on silver) and vary the
quality factor. For ω ≫ γ, this is as simple as changing γ. We
then plot the maximum FE of the dimer minus the nanolens for
κ = 4 (see Figure 6). Negative numbers correspond to the

nanolens outperforming the dimer. The results show that the
nanolens geometry, for these particular parameters, is desirable
when the quality factor is very large (Q ≳ 800), which is far
beyond what is achievable in plasmonics in the visible (the Q of
silver at the LSP resonance is ∼30) and is only just within the
reach of the best of polar dielectrics at much lower frequencies;
SiC has Q ∼ 900 at the LSPhP resonance.43 Alternative
materials suitable for constructing nanolens could be high index
dielectrics which exhibit very large quality factors or hybrid
dielectric-metal systems where the loss can be modified over
orders of magnitude (∼103) from metal to dielectric-like.62

It is worth mentioning that in the original work of Li et al. it
was shown that a symmetric nanolens increases the FE by a
factor of 2. So far in this work, we have stuck to three self-
similar nanospheres, as this corresponds to the most common
type of nanolens studied in experiments and will remain in the
nanolensing regime for the largest range of κ. Higher FEs can
be achieved with a larger number of elements, although at the
cost of added complexity to build. Such devices have been
experimentally demonstrated12 and lead to improved SERS
intensity13 compared to the three particle nanolens. In Figure
5b we show the results for a nanolens built of four spheres. The
smallest sphere radius (R4) and gap (g34) are 5 and 3 nm,
respectively, and κ = 4. We find that the nanolens can achieve a
maximum FE of almost double the equivalent dimer, again
demonstrating the effectiveness of the cascade effect in SiC
devices. Higher numbers of nanospheres could be considered
and could well lead to even larger improvements. We have also
explored four particle silver nanolenses for low κ and observed
no significant advantage compared to the equivalent dimer
system (result not shown). Interestingly, to observe a
consistent advantage for the silver nanolens we had to look
at extreme cases such as R4 = 1 nm and g34 = 3 nm, in the range
1 < κ < 2.5. Of course, this is an unrealistic case as nonlocal
effects, which were not included in this calculation, would
destroy the nanolensing in reality.

Figure 5. Field enhancement for (a) a 3 particle SiC nanolens of
geometry R3 = 5 nm, g23 = 3 nm, and κ = 10, and (b) a 4 particle
nanolens of geometry R4 = 5 nm, g34 = 3 nm, and κ = 4. Both are
compared with the equivalent volume dimer.

Figure 6. Maximum field enhancement of a dimer minus that of a
nanolens for a fictitious Drude metal with variable Q. The geometry
parameters are R3 = 5 nm, g23 = 3 nm, and κ = 4. Indicated in blue are
the regions where the dimer is superior and cream are the region
where the nanolens is superior. The hashed region indicated the region
of realistic Q values for metals.
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As a final remark, we note that the geometries shown, while
demonstrating extreme FE, may be difficult to produce for
experimental demonstration due to the large κ and small gaps.
These results should be taken as an indication of the ultimate
achievable FEs in polar dielectrics (although we emphasize that
further geometrical optimization is certainly possible). To
demonstrate a more attainable device, we consider a nanolens
with both the smallest nanosphere radius and gap to be 10 nm
and limit ourselves to κ = 4, which is inline with what is
experimentally achievable. The results are shown in Figure 7,

we find for these geometries that the maximum FE is 52% and
116% larger for the 3 and 4 particle nanolens geometry, as
compared to the equivalent dimer, respectively. The value of
the FE is, of course, lower than the results shown in Figure 5
due to the larger gap. A wider spacing leads to a lower number
of higher order plasmon modes being excited and a consequent
drop in the field concentration near the smaller nanosphere.
The results are clear evidence that experimentally realistic SiC
devices can utilize the cascade effect to achieve large FEs,
beyond what is achievable with metal based devices.

■ CONCLUSIONS
We have shown that nonlocal effects hugely limit the possible
FE in plasmonics nanolens and have shown that building
smaller metallic nanolens to beat retardation is not a viable
strategy because of nonlocality. Our top-down approach using
quasi-quantum models contrasts with existing studies, based on
density functional theory, which have found surprisingly large
FEs27,30,31 and emphasizes the need for a greater understanding
of the loss channels relevant to plasmonics at these length
scales. A more promising route to achieve large FEs is to use
suitable materials or geometries with resonances in the IR/THz
where higher quality factors and a much larger span of κ within
the electrostatic regime, are possible. In particular, we have
illustrated the potential of SiC nanolenses to achieve extreme
FEs on the order of 104, we can expect even higher FEs for
optimized structures. These nanolenses could have applications
in molecular sensing in the mid-IR range and could also be
suitable for achieving coupling with graphene plasmons and
molecular excitations to create tunable hybrid modes.63 The use
of high-index dielectrics for the cascade effect is also promising
due to their much superior quality factor compared to metals.

■ METHODS
For sodium, we use a Drude dielectric function

ωϵ = − ω
ω ωγ+

( ) 1
i

P
2

2 with parameters ωP = 6.05 eV and γ =

0.02684 eV. The plasma frequency is determined by the

Wigner-Seitz radius 2.08 Å, which is also used to determine the
Jellium density. For gold and silver, we use experimental data
from Johnson and Christy.64 For aluminum, Drude parameters
of ωP = 15.3 eV and γ = 0.598 eV.65 For SiC we use a Lorentz

oscillator model ωϵ = ϵ + ω ω
ω ω ωγ∞

−
− −( )( ) 1

i
L
2

T
2

T
2 2 with the

longitudinal and transverse optical phonon frequencies ωT =
0.0988 eV and ωL = 0.120 eV, respectively, ϵ∞ = 6.56 and γ =
0.00059 eV.66 Throughout, where possible, we checked local
calculations by using both the BEM and GMM method and
found excellent agreement.
When using the local analogue model, we set the artificial

dielectric thickness to R/200 throughout, we have checked the
accuracy of the method by comparison to coated Mie theory for
a single sphere.53 For the TDDFT calculations we used the real
space code OCTOPUS.67 To test the validity of our simulation
we checked the sum rule ∫ s(ω)dω = N, where N is the number
of valence electrons and found it was satisfied to 99.8%.
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