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Landauer’s formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
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In this work, we analyze the incidence of the plates’ thickness on the Casimir force and radiative heat transfer for
a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz’s and Landauer’s formulas. From
a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form
expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR. We
distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium
situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence
of the Casimir force and heat transfer with the plate thickness (setting dL = dR ≡ d), showing the scale at which
each magnitude converges to the value of infinite thickness (d → +∞) and how to correctly reproduce the
nonequilibrium Lifshitz’s formula. For the heat transfer, we show that Landauer’s formula does not apply to
every case (where the three contributions are present), but it is correct for some specific situations. We also
analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions,
showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation
distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given
by the baths’ contribution only. The combination of these behaviors allows for the possibility, on one hand, of
having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and,
on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal
shielding). These features turns out to be relevant for nanotechnological applications.
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I. INTRODUCTION

One of the most fundamental aspects of every physical
theory describing quantum phenomena is dispersion, which
unavoidably emerges in every formalism considered. This
means that, at the quantum level, we always deal with dynamics
that include background fluctutations, which enforces the
employment of statistical quantities to describe the reality of
nature.

Within this context, fluctuation features are found for every
state of the system under study, even for the state of lowest
energy. This state is usually called the “ground state” although
in contexts involving the notion of particles it is also referred to
as “vacuum state,” since it commonly corresponds to the state
with zero number of particles or, in other words, without real
particles. However, the statistical aspects allow for the concept
of virtual particles, characterized by a ephemeral existence and
then being part of fluctuational deviations of the particle num-
ber with respect to the number of real particles. Nevertheless,
although these virtual particles seem to have no physical reality,
the fluctuational deviations are precisely responsible of purely
quantum phenomena that can be experimentally measured and
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present no classical equivalent. That is how the quantum nature
of vacuum takes part in the description of different physical
situations (see Refs. [1,2]).

Within the context of quantum field theory (QFT), dis-
persion phenomena includes van der Waals–Casimir forces
and heat transfer between micro- and macroscopic bodies,
including micro and nanoelectromechanical systems (MEMS
and NEMS; see Ref. [3]). Thus, the possibility of having com-
pletely quantum effects appearing at macroscales is a reality
and studying them is of relevant interest from theoretical,
experimental, and technological points of view (see Ref. [4]).

In the case of the van der Waals–Casimir force, there
is a vast number of remarkable works analyzing different
aspects related to multiple configurations, geometries (see, for
example, Refs. [5–10]), and materials in different contexts (see
Refs. [11–15], to mention a few). Moreover, there are also
works studying thermodynamic aspects of the Casimir force
involving dissipative materials (see Refs. [16–20]).

The previous research includes equilibrium and nonequi-
librium situations. It should be noted that in the context
of the dispersion phenomena addressed in this work (static
Casimir forces and steady heat flux), “nonequilibrium” stands
for steady situations (with time-independent quantities) that
cannot be described as a thermodynamic equilibrium scenario
between the parts of the total system considered.
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In the Casimir framework, it must be mentioned first that the
pioneering work of Lifshitz (see Ref. [21]) was the first to shed
light on the theoretical framework which allows us to include
dissipative materials in the calculation of Casimir forces. In
that work, he developed the basis of fluctuational quantum
electrodynamics (FQED) by combining the electrodynam-
ics in real media with the quantum fluctuation-dissipation
theorem applied to the current sources at zero temperature.
This demonstrate the fact that the Casimir force, existing
even at zero temperature, is a macroscopic effect of quantum
origin. The configuration that he analyzed was conformed
by two parallel plates of infinite thickness (or half-spaces)
separated by a vacuum gap. Although his result was valid
for zero temperature, the finite-temperature generalization for
half-spaces did not take long to be achieved also by Lifshitz
and other author, but this time from a fully QFT approach (see
Ref. [22]). The expression found for the force gives what it is
now commonly referred as “Lifshitz formula.” In that work,
the expression was given in the Matsubara representation.
Nevertheless, the formula can be also written as an integral
whose integrand is a product of two factors, one containing
the information of the materials in the reflection coefficients
of each half-space and another one including the temperature
as the only parameter. Moreover, it was shown that in thermal
equilibrium the expression for the Casimir force between
finite-width plates results with the same form of the Lifshitz
formula but the reflection coefficients are the ones for plates of
finite thickness. Throughout this work, we will use “thickness”
and “width” indistinctly for referring to the length of the
parallel plates in the normal direction to its surfaces. Clearly,
Lifshitz’s formula is reobtained from this result by taking the
infinite-thickness limit for the plates, which is guaranteed by
the fact that the finite-width reflection coefficients reduce to
the ones for half-spaces (see Ref. [14] for a review on this).

It should be noted that, throughout Casimir physics, a
crucial point is always to handle and substract infinites that
arise unavoidably in QFTs. In other words, for obtaining finite
results, a regularization procedure has to be implemented.
There are different methods for handling divergences depend-
ing on the situation analyzed. Beyond them, for parallel plates
made of dissipative materials, no infrared divergences occur
and the ultraviolet divergences are prevented by the natural
cutoff provided by the dissipation in the material (see, for
example, Ref. [23]), which takes in account the fact that the
materials are transparent for high frequencies (for the case
without dissipation, a cutoff function has to be introduced by
hand to obtain a finite result). However, the result is infinite due
to the inherent zero-point fluctuations. These divergences are
contained in the mentioned factor associated to the materials
in the integral form for the force. For two finite-width plates in
thermal equilibrium, there are two methods for eliminating
these divergences. One is the “Casimir prescription” (see
Ref. [1]), consisting in calculating the energy contained in
the gap between the plates and subtracting it with the energy
contained in the same region and in the same situation (thermal
equilibrium) for the case of free space, i.e., in absence of the
plates. This method also applies for half-spaces. The other
method is based on subtracting the radiation pressure at each
side of one of the (finite-width) plates, which corresponds to the
net force over the given plate (see Ref. [24], for example). Both

methods gives the mentioned finite-width formula at thermal
equilibrium. Moreover, it is worth noting that both regular-
ization procedures takes into account the specific scenario of
thermal equilibrium in order to only affect the factor associated
to the materials in a correct way.

On the other hand, for nonequilibrium scenarios, one
can found research addressing configurations involving point
dipoles, spheres, and half-spaces (see Refs. [19,25–30] and
literature cited therein) based fundamentally in the FQED
approach. A full QFT approach to nonequilibrium scenarios
was recently developed in Ref. [31] and then successfully
implemented to derive the half-spaces’ result obtained from
FQED (see Ref. [32]). Also in these situations, regularization
procedures are required. In FQED formalisms, this step is
typically accomplished by discarding the bulk part of the
Green’s tensor, which ensures that all the terms independent
of the relative positions of the material bodies are effectively
discarded. Thus, this can be seen as a third method that applies
for very general situations, but within the context of a FQED
approach (see also Refs. [33,34]).

To the best of our knowledge, there are no previous works
dedicated to investigating whether the two methods described
above for the study of finite-width plates in equilibrium can be
implemented in situations out of equilibrium and how to do it in
a conceptually clear approach. Moreover, the nonequilibrium
version of the Lifshitz formula was obtained but not deduced
from the finite-width case within the context of a full QFT
approach. One recent work going in this direction is Ref. [24],
where a canonical quantization formalism is developed to ob-
tain the force between finite-width plates in a nonequilibrium
scenario characterized by thermal and squeezed states but not
addressing the previous question. Within this framework, the
Casimir force is given by two types of contributions, one
associated to the radiation generated by the plates and another
one associated with the initial state of the field.

Now, we consider this approach to give a clear answer
to this issue as part of the results of the present work. By
considering an initial state for the field that gives a temperature
for modes impinging the plates configuration from the left and
another one to the modes impinging from the right, we show
how in a nonequilibrium scenario the connection between the
finite-width result and the nonequilibrium Lifshitz formula is
achieved. This shows how to adapt the Casimir prescription
for these situations, while the method based on the pressures
subtraction leads to an incorrect result.

On the other hand, for the case of heat transfer, the phe-
nomenon admits classical or quantum descriptions depending
on the particular scenario. In the farfield, there are plenty
of works describing the heat transfer in terms of classical
frameworks based on electrodynamics combined with ther-
modynamics results (see Ref. [35]). The heat transfer between
bodies at different temperatures is given by Stefan’s law of
heat exchange (see also Refs. [36,37]), which is basically the
difference between the blackbody radiation emitted by each
body, only considering the statistical properties of propagating
modes of the electromagnetic (EM) field. Additionally, when
the macroscopic bodies have a particular shape, one can
develop a theory implementing this law but weighted with
the geometrical properties of the given configuration. This ap-
proach basically takes into account how much radiation emitted
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from one body impinges the other. Within this framework, the
radiation is treated in a thermodynamical way, without giving
a specific description as EM waves.

As the typical distances involved in the situation addressed
get shorter, far-field treatment is no longer valid and the wave
nature of the EM field begins to become crucial. Propagating
modes lead the heat exchange, but diffraction and interference-
like phenomena could have an impact on some configurations.
Moreover, in the near-field regime, the evanescent modes
start to contribute, becoming a channel of heat transfer that
cannot be neglected and which, in fact, could be the most
important contribution in some situations. Then, a wave
description of the EM radiation is mandatory. Moreover, when
considering dissipative materials from first-principles models,
low temperatures or entirely quantum objects (as magnetic
moments of spin), the need of a quantum theory becomes
relevant. Some aspects can be described in a semiclassical
way, through a stochastic electrodynamic theory, but replacing
the classical fluctuation-dissipation theorem by its quantum
version, as it happens for FQED (see Refs. [1,34]). However,
the development of a purely quantum approach enriches our
understanding from a conceptual point of view and allows
the study of regimes beyond the classical (see, for example,
Refs. [38–40]).

The analog to Lifshitz’s work for Casimir forces but in heat
transfer is Ref. [41]. There, the authors developed a general EM
theory and deduced the heat exchange between two half-spaces
at different temperature. The approach includes propagating
and evanescent modes’ contributions and includes a quantum
fluctuation-dissipation relation for the sources of current. The
result obtained for the heat transfer has the form of Landauer’s
formula, where the heat is expressed as an integral over the
frequencies with its integrand given by a product of two factors,
one given by the difference of the boson occupation numbers of
the radiations emitted by each body and another one including
the geometrical and material properties of the bodies. This
formula also predicts the enhancement of heat transfer in the
near-field regime due to the growing of the evanescent modes’
contribution. However, although it is widely used for different
scenarios and configurations (see also Refs. [42,43]), another
of the main achievements of the present work is to show that
this formula is not valid in general for a finite-width plate
configuration. Moreover, we show in which cases a Landauer’s
formula is obtained, gaining intuition about the physical
properties of the different contributions that appear. Within
the same scenario considered for the calculations regarding
the force, we show that for the heat flux between the plates,
Landauer’s formula is not obtained for finite thickness, even if
the initial state of the field is taken as the vacuum state (zero
temperature). This is conceptually different from what it is
analyzed in Refs. [42,43]. We consider that this understanding
is crucial for the correct design of experiments at the micro-
and nanoscale and also for the development and improvements
of novel nanotechnological devices as MEMS and NEMS and,
moreover, involving typical metals (see Ref. [12]).

All these features are studied and complemented with
numerical calculations, exploiting some interesting phenom-
ena that are expected with the physical intuition obtained.

In order to focus the main text of this work and the
calculations on the mentioned results and the numerical

calculations, we have taken the formal results of Ref. [24]
as a starting point and left some specific calculations and
deductions to appendixes at the end of the paper. The paper
is organized as follows: In the next section, we summarize
the model, the field equation, and the steady solution for the
field operator obtained in Ref. [24]. In Sec. III, we summarize
the separation in contributions of the expectation value of
the energy-momentum tensor, calculating general forms for
arbitrary bodies but assuming thermal states for each bath and
introducing an intrinsic nonequilibrium initial state for the field
(the properties of this particular initial state for the field are
also described in Appendix A). Then, we use these features to
obtain the Casimir force and the heat flux between two plates
of different thickness and materials (in Appendix B there are
formulas complementing the obtained result). In Sec. IV, we
study different aspects of the general formulas, showing that
they reproduce all the previous (and well-known) results as
particular cases, including Lifshitz’s and Landauer’s formulas.
In Appendix C, there are some complementary calculations to
this section. Section V is devoted to the numerical analysis
for the case of identical plates (same material and thickness),
showing the scale of convergence to the infinite-thickness
expressions (given by Lifshitz’s and Landauer’s formulas) and
the possibility of tuning the heat flux between the plates even
to zero. Finally, Sec. VI summarizes our findings.

For simplicity, we have set h̄ = kB = c = 1.

II. MODEL, TIME EVOLUTION, AND STEADY STATE

One way to address the matter-field interaction at a quantum
level is to give a first-principles microscopic model for describ-
ing the quantum field in interaction with quantum degrees of
freedom at each point of space (representing matter). In order
to include effects of dissipation and noise in the description,
we will use the theory of open quantum systems and treat the
full field dynamics, having in mind the paradigmatic example
of the quantum Brownian motion (QBM) [2].

In the present work, we consider the same model as the
one employed in Ref. [24], that consists of a system composed
of two parts: a massless scalar field and a dielectric material
which, in turn, are described by their internal degrees of
freedom (a set of harmonic oscillators); see Fig. 1.

Both subsystems conform a composite system which, in
each point of space, is coupled to a second set of harmonic
oscillators that plays the role of an external environment or
thermal bath. For simplicity, we will work in 1 + 1 dimen-
sions. In our toy model, the massless field represents the
electromagnetic field, and the first set of harmonic oscillators
directly coupled to the scalar field represents the polarizable
volume elements of the material. In this model, the field and
the volume elements of the material couples through a current-
type one (mimicking the typical interaction term between the
electromagnetic field and matter). The coupling constant for
this interaction is the electric charge e. We will also assume that
there is no direct coupling between the field and the thermal
bath. Thus, the Lagrangian density is considered as

L = Lφ + LS + Lφ−S + LB + LS−B

= 1

2
∂μφ∂μφ + 4πη

[
1

2
mṙ2

x (t) − 1

2
mω2

0r
2
x (t)

]
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FIG. 1. Scheme of the composite system considered for the interaction field matter, expressed in the different terms of the Lagrangian in
Eq. (1). It consists of two parts: the field φ and the material body. At the same time, each point of the material body is given by a polarization
degree of freedom coupled to its own thermal bath (a set of harmonic oscillators).

+ 4πηeφ(x,t)ṙx(t)

+ 4πη
∑

n

[
1

2
mnq̇

2
n,x(t) − 1

2
mnω

2
nq

2
n,x(t)

]
− 4πη

∑
n

λnqn,x(t)rx(t), (1)

where the different terms on the right-hand side correspond
to the different parts of the total composite system and its
interactions. The first term corresponds to the Lagrangian of
the massless scalar field. The second one, containing brackets,
accounts for the polarization degrees of freedom of each vol-
ume element of the material, described as harmonic oscillators.
The third contribution is the current-type interaction between
the field and the degrees of freedom of the material. The fourth,
also containing brackets, corresponds to the set of harmonic
oscillators conforming the thermal bath. The last term is the
(linear) interaction of the bath’s oscillators with its respective
volume element degree of freedom.

We have denoted the fact that r and qn have a dependence
on position with a label identifying the point of space at which
they are located (but it is important to stress that this label is
not a dynamical variable, as it happens for the scalar field). It is
clear that each atom interacts with a thermal bath placed at the
same position. We have denoted by η the density of the degrees
of freedom of the volume elements. The constants λn are the
coupling constants between the volume elements and the bath
oscillators. It is implicitly understood that Eq. (1) represents
the Lagrangian density inside the material, while outside the
Lagrangian is given by the one of a free field.

The quantization of the theory is straightforward. It should
be noted that the full Hilbert space H of the model is not
only the field Hilbert space Hφ (as it is considered in others
works where the field is the only relevant degree of freedom)
but also includes the Hilbert spaces of the volume elements’
degrees of freedom HA and the bath oscillators HB, in such a
way that H = Hφ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts of
the systems are uncorrelated and not interacting. Interactions
are turned on at t = t0. Therefore, the initial conditions for the
operators φ̂, r̂ must be given in terms of operators acting in
each part of the Hilbert space. The interactions will make that

initial operators to become operators over the whole space H.
The initial density matrix of the total system is of the form

ρ̂(t0) = ρ̂IC(t0) ⊗ ρ̂A(t0) ⊗ ρ̂B. (2)

In principle, each part of the whole system can be in any
initial state. Then, following Ref. [24] we can straightforwardly
write the Heisenberg equations of motion and solve those
related to the material’s degrees of freedom and introduce it in
the corresponding field equation to obtain an effective equation
for the full dynamics of the field operator:

�φ̂ + ∂2

∂t2

[∫ t

t0

dτχx(t − τ )φ̂(x,τ )

]
= 4πηeC(x)

[
G̈2(t − t0)̂rx(t0) + Ġ2(t − t0)

p̂x(t0)

m

+
∫ t

t0

dτĠ2(t − τ )
F̂x(τ − t0)

m

]
, (3)

where χx(t) = ω2
PlG2,x(t)C(x) is the susceptibility function

with ω2
Pl = 4πηe2

m
being the plasma frequency and G2,x being

the retarded Green’s function associated to the QBM equation
at the point x, r̂x(t0) and p̂x(t0) are the position and momentum
operator of the volume element degrees of freedom of the
material, and F̂x is the stochastic force operator generated
by the bath at x which acts over the corresponding volume
element. As can be seen in Ref. [24], this operator is a gener-
alization of the stochastic force operator found in the quantum
Brownian theory (within an open quantum system framework;
see Ref. [2]) and it is characterized by its correlations given by
a fluctuation-dissipation relation:〈{

F̂
∞
x ′ (ω′),F̂

∞
x ′′ (ω′′)

}〉
B = (2π )2δ(x ′ − x ′′)

J (ω′)
2η

× coth

(
βB,x ′ω′

2

)
δ(ω′ + ω′′), (4)

where βB,x ′ corresponds to the inverse temperature of the
thermal bath located at x ′ (see Fig. 1 and Ref. [24] for more
details).

It is worth noting that we have included a spatial label
denoting the straightforward generalization to inhomogeneous
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media, where each point of the material can have different
properties. Beyond this dependence, the boundaries of the
material bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by this
function. This is clearly essential for the determination of the
field’s boundary conditions.

Equation (3) can be solved in terms of the retarded Green’s
function GRet after initial conditions for the field operator are
given. In Ref. [24], this procedure has been done by giving
free field initial conditions for the field operator, which are
expressed in terms of the annihilation and creation operators
[̂ak(t0),̂a†

k(t0)] of the free field. Therefore, at the initial time
t0, the field is only an operator acting on Hφ but switching
on the interactions causes the field operator to become an
operator which acts on the full Hilbert space H during the
time evolution:

φ̂(x,t) = φ̂IC(x,t) ⊗ IA ⊗ IB + Iφ ⊗ φ̂A(x,t) ⊗ IB

+ Iφ ⊗ IA ⊗ φ̂B(x,t). (5)

However, as we are interested in the expressions for the heat
transfer and the Casimir force in nonequilibrium but steady
situations, we require the long-time limit (t0 → −∞) of the
total field operator. The full expressions for each part during
the time evolution and also the deduction of its long-time
expressions for the present model can be found in Ref. [24],
and we obtain

φ̂(x,t) −→ φ̂∞(x,t) = φ̂∞
IC (x,t) ⊗ IA ⊗ IB + Iφ ⊗ φ̂∞

A ⊗ IB

+ Iφ ⊗ IA ⊗ φ̂∞
B (x,t), (6)

with each long-time operator given by

φ̂
(+),∞
IC (x,t) =

∫ +∞

−∞
dk

(
1

ωk

)1/2

âk(−∞){e−ikt
(k)�>
−ik(x)

+ eikt
(−k)[�<
−ik(x)]∗}, (7)

φ̂
(+),∞
A = −1

2

∫
dx ′ 4πηeC(x ′)√

2mω0
b̂0,x ′ (−∞), (8)

φ̂∞
B (x,t) =

∫
dx ′ 4πηeC(x ′)

m

∫ +∞

−∞

dω

2π
e−iωt iωG2(ω)

×GRet(x,x ′,ω)F̂
∞
x ′ (ω), (9)

where �≶ are the homogeneous solutions associated to the
homogeneous field equation and satisfy only the boundary con-
dition on each limit of the variable value’s interval, b̂0,x ′ (−∞)
is the annihilation operator of the volume element degree of
freedom, and the overlines denote Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE
AT THE STEADY STATE

With the field operator at the steady state, we can evaluate
both the Casimir force and the heat transfer between two plates
in an unified way by calculating the expectation values of the
energy-momentum tensor operator. The quantum version of
the energy-momentum tensor is obtained by symmetrizing the
classical expression after promoting the field to a quantum

operator, giving

T̂μν

(
xσ

1 ,t0
) ≡ (

δγ
μδα

ν − 1
2ημνη

γα
)

1
2

[
∂γ φ̂

(
xσ

1

)
∂αφ̂

(
xσ

1

)
+ ∂αφ̂

(
xσ

1

)
∂γ φ̂

(
xσ

1

)]
. (10)

As the field operator in the steady state is given by Eq. (6),
by noting that the contribution associated to the volume
elements is independent of time and space, we have that for
the derivatives holds ∂μφ̂∞ = ∂μφ̂∞

IC ⊗ IA ⊗ IB + Iφ ⊗ IA ⊗
∂μφ̂∞

B . Therefore, the volume elements has no contribution
to the expectations values of the energy-momentum tensor.
Moreover, as shown in Ref. [24], the expectation values of
the annihilation and creation operators are zero for thermal
states and we are considering thermal states for the baths. This
turns out to be enough to prove that the expectation value of
the energy-momentum tensor splits into two contributions, one
associated to the initial conditions of the field and the other one
associated to the baths:〈

T̂ ∞
μν

(
xσ

1

)〉 = 〈
T̂ IC,∞

μν

(
xσ

1

)〉
φ

+ 〈
T̂ B,∞

μν

(
xσ

1

)〉
B, (11)

where 〈· · · 〉φ,B = Trφ,B(ρ̂IC,B . . . ), denoting that each trace is
taken in the corresponding part of the total Hilbert space.

Nevertheless, while for the baths we assume thermal states,
for the field we will consider an intrinsic nonequilibrium state
that takes into account the possibility for the initial free field
to be in a state with net radiation going from left to right.
Although the configuration is surrounded by free space, it is
of phenomenological interest to consider a scenario where the
configuration of plates is in contact with a general reservoir
(i.e., the plates are inside an oven) with its left and right walls
located at x = −∞ and x = +∞ respectively and having each
one at different (inverse) temperature βφ,L and βφ,R. Initially,
before the appearance of the plates, having this situation clearly
generates an intrinsic flow of heat from the hottest wall to
the coldest one. After the appearance of the plates, during the
transient stage, this flow is modified by the presence of the
plates (as it happens in Ref. [24] for the field in an initial
thermal state) until reaching the (steady) long-time regime.

Therefore, as the walls of the (hypothetical) oven are held
at different temperatures, the crucial point here is that the
modes representing traveling waves from left to right (k > 0)
will radiate at the inverse temperature βφ,L, while the modes
representing traveling waves from right to left (k < 0) will
radiate at the inverse temperature βφ,R. Then, the intrinsic
nonequilibrium state for the field will be defined by the
expectation values:

〈̂ak(−∞)̂ak′(−∞)〉φ = 0,

〈̂a†
k(−∞)̂ak′(−∞)〉φ = [
(k)Nφ,L(ωk) + 
(−k)Nφ,R(ωk)]

× δ(k − k′), (12)

where the typical expectation values for a thermal state
(see Ref. [24]) are simply recovered by setting βφ,L = βφ,R.
More about the intrinsic nonequilibrium state is shown in
Appendix A. In Fig. 2, a scheme of the configuration of plates
within our formalism can be found.

Considering this, for a general configuration, both
terms of the expectation value of the components of the
energy-momentum tensor can be calculated by employing
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= 0SFree
x

φ

- ∞ + ∞

→-∞

- ∞ + ∞- ∞ + ∞

FIG. 2. Scheme of the configuration of plates within the canonical quantization formalism employed. The initial time corresponds to t = t0
and the plates are not interacting with the scalar field. The field is free and it has a state of net heat flux different from zero. This information
is encoded in the chosen “intrinsic nonequilibrium state” defined by Eq. (12) and commented in Appendix A. The amount of net heat flux is
defined by the temperatures Tφ,L,R, that can be interpreted as the temperatures of the walls of the hypothetical oven where the plates are placed.
At t = t0 the interaction of the field with the plates starts, having a transient stage that reaches a steady situation (t0 → −∞). All the points of
each plates are assumed to be at a given temperature TB,L,R (each body has an uniform temperature). In the steady situation, there is radiation
emitted by the plates and by the walls of the hypothetical oven in all the regions and with all directions, due to the reflections in the bodies. In
this situation, the Casimir force and the heat flux are evaluated.

the Green’s function and the homogeneous solutions for the given problem, obtaining the following expressions:

〈
T̂ IC,∞

μν

(
xσ

1

)〉
φ

=
∫ +∞

−∞
dk

1

ωk

[

(k) coth

(
βφ,Lωk

2

)
+ 
(−k) coth

(
βφ,Rωk

2

)]
Re

[(
δ0
μ(−iωk)�k + δ1

μ�
′
k

)
× [

δ0
ν iωk(�k)∗ + δ1

ν (�
′
k)∗

] − ημν

2

(
ω2

k |�k|2 − |�′
k|2

)]
, (13)〈

T̂ B,∞
μν (x)

〉
B

=
∫

dx ′C(x ′)
∫ +∞

−∞
dω

ω2

2
Re(nx ′ )Im(nx ′ ) coth

(
βB,x ′ω

2

)([
δ0
μ(−iω) + δ1

μ∂x

]
GRet(x,x ′,ω)

[
δ0
ν iω + δ1

ν∂x

]
G

∗
Ret(x,x ′,ω)

+ [
δ0
μ(−iω) + δ1

μ∂x

]
G

∗
Ret(x,x ′,ω)

[
δ0
ν iω + δ1

ν∂x

]
GRet(x,x ′,ω) − ημν[ω2|GRet(x,x ′,ω)|2 − |∂xGRet(x,x ′,ω)|2]

)
, (14)

where in the initial conditions’ contribution we have used the notation that �k(x) = �>
−ik(x) for k > 0 while �k(x) = (�<

−ik(x))∗
for k < 0, and ωk = |k|.

However, for a specific material configuration the homogeneous solutions � (from which the Green’s function can be
constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness dL,R

respectively and different homogeneous materials separated by a distance a and surrounded by vacuum, those solutions � can
be determined easily (see Ref. [24]). As we are considering a nonequilibrium situation, the Casimir force will be calculated
from the expectation value of the xx component of the energy-momentum tensor, evaluated in the region between the plates
and subtracting it with the same quantity in the absence of the plates’ configuration. This prescription is exactly the Casimir
prescription for regularizing the expression of the force that here we apply for a nonequilibrium situation. It is worth noting that
the method employing the radiation pressures at each sides of one of the plates (as is done for instance in Ref. [24] and references
therein) is not applicable for this situation since it gives an incorrect regularization for the force and, moreover, different values
of the force acting each plate. However, we can say that both approaches agree when the same state (thermal or not) is considered
for each plate and for all the modes of the initial conditions’ contribution (as happens in Ref. [24]). Therefore, the Casimir force
is given by

FC = 〈
T̂ Free

xx

〉
φ

− 〈
T̂ ∞

xx

〉Int = 〈
T̂ Free

xx

〉
φ

− 〈
T̂ IC,∞

xx

〉Int
φ

− 〈
T̂ B,∞

xx

〉Int
B , (15)

where 〈T̂ Free
xx 〉φ is given by Eq. (A3). It is worth mentioning that the temperatures in the regularization term 〈T̂ Free

xx 〉φ will be taken
as βφ,L,R since it corresponds to a situation without plates and entirely defined by the walls of the (big) oven.

Therefore, each contribution is given by

〈
T̂ IC,∞

xx

〉Int
φ

[a,dL,dR,βφ,L,βφ,R] =
∫ +∞

0
dkk

[
coth

(
βφ,Lk

2

)
(|C>

−ik|2 + |D>
−ik|2) + coth

(
βφ,Rk

2

)
(|C<

−ik|2 + |D<
−ik|2)

]

=
∫ +∞

0
dkk

[
coth

( βφ,Lk

2

)|tL|2(1 + |rR|2) + coth
( βφ,Rk

2

)|tR|2(1 + |rL|2)
]

|1 − rLrRei2ka|2 , (16)
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〈
T̂ B,∞

xx

〉Int
B [a,dL,dR,βB,L,βB,R]

=
∫ +∞

0
dω

ω

2

(
coth

[
βB,Lω

2

]
Re(nL)

(1 + |rR|2)

|tR|2
{
|E<

−iω|2e−ωIm(nL)a[1 − e−2ωIm(nL)dL ]

+ |F<
−iω|2eωIm(nL)a[e2ωIm(nL)dL − 1] + 2

Im(nL)

Re(nL)
Im[E<∗

−iωF<
−iωe−iωRe(nL)a(1 − e−i2ωRe(nL)dL )]

}
+ coth

[
βB,Rω

2

]
Re(nR)

(1 + |rL|2)

|tL|2
{
|E>

−iω|2e−ωIm(nR)a[1 − e−2ωIm(nR)dR ] + |F>
−iω|2eωIm(nR)a[e2ωIm(nR)dR − 1]

+ 2
Im(nR)

Re(nR)
Im[E>∗

−iωF>
−iωe−iωRe(nR)a(1 − e−i2ωRe(nR)dR )]

})
, (17)

and the coefficients for the plate configuration C
≶
−ik,D

≶
−ik,E

≶
−ik,F

≶
−ik for each mirror rL,R,tL,R and for an interface rnL,R can be

found in the Appendix B.
It is worth noting that each contribution results are symmetric under the interchange of the subscripts L and R, which means

that the force has the same absolute value for both plates (with opposite signs on each one) and also that the inverted configuration
of plates and oven walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region between
the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the x0 component of the
energy-momentum tensor. Then, the heat presents the same structure of contributions as the Casimir force:

Q∞ ≡ 〈
Ŝ∞

x

〉 = −〈
T̂ ∞

x0

〉 = QIC
∞(a,dL,dR,βφ,L,βφ,R) + QB

∞(a,dL,dR,βB,L,βB,R), (18)

where each contribution is given by

QIC
∞(a,dL,dR,βφ,L,βφ,R) =

∫ +∞

0
dkk

[
coth

(
βφ,Lk

2

)
(|C>

−ik|2 − |D>
−ik|2) − coth

(
βφ,Rk

2

)
(|C<

−ik|2 − |D<
−ik|2)

]

=
∫ +∞

0
dkk

[
coth

( βφ,Lk

2

)|tL|2(1 − |rR|2) − coth
( βφ,Rk

2

)|tR|2(1 − |rL|2)
]

|1 − rLrRei2ka|2 , (19)

QB
∞(a,dL,dR,βB,L,βB,R) =

∫ +∞

0
dω

ω

8

(
coth

[
βB,Lω

2

]
Re(nL)

(1 − |rR|2)

|tR|2
{
|E<

−iω|2e−ωIm(nL)a[1 − e−2ωIm(nL)dL ]

+ |F<
−iω|2eωIm(nL)a[e2ωIm(nL)dL − 1] + 2

Im(nL)

Re(nL)
Im[E<∗

−iωF<
−iωe−iωRe(nL)a(1 − e−i2ωRe(nL)dL )]

}
− coth

[
βB,Rω

2

]
Re(nR)

(1 − |rL|2)

|tL|2
{
|E>

−iω|2e−ωIm(nR)a[1 − e−2ωIm(nR)dR ]

+ |F>
−iω|2eωIm(nR)a[e2ωIm(nR)dR − 1]

+ 2
Im(nR)

Re(nR)
Im[E>∗

−iωF>
−iωe−iωRe(nR)a(1 − e−i2ωRe(nR)dR )]

})
. (20)

In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the contributions,
denoting the fact that if the configuration of plates and oven walls is reversed, the flux of heat goes in the opposite direction, as
expected.

Equations (15)–(20) are the main results that we will analyze in the relevant (limit) cases in order to study the effect of thickness
in the total expressions for both the force and heat in the nonequilibrium scenario.

Nevertheless, we get a simpler expression for the total heat by employing a relation between parts of the integrands regarding
the materials that are based on the fact that in equilibrium (βφ,L = βφ,R = βB,L = βB,R = β) the total heat transfer is zero. In
other words, as we have

Q∞(a,dL,dR,β,β,β,β) = QIC
∞(a,dL,dR,β,β) + QB

∞(a,dL,dR,β,β) ≡ 0, (21)

this gives us a relation between the part of the integrands in Eqs. (19) and (20) involving the material properties since the thermal
factors are the same for every term. Then, using this relation, we can write the total heat (in general) by mixing the contributions,

Q∞(a,dL,dR,βφ,L,βφ,R,βB,L,βB,R)

=
∫ +∞

0
dk2k

{[Nφ,L(k) − NB,R(k)]|tL|2(1 − |rR|2) − [Nφ,R(k) − NB,R(k)]|tR|2(1 − |rL|2)}
|1 − rLrRei2ka|2
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+
∫ +∞

0
dk

k

2

(1 − |rR|2)

|1 − rLrRei2ka|2
[
NB,L(k) − NB,R(k)

] (1 − |rnL |2)

|1 − r2
nL

ei2knLdL |2
{

(1 + |rnL |2e−2kIm(nL)dL )(1 − e−2kIm(nL)dL )

+ 4Im(nL)e−2kIm(nL)dL

|nL + 1|2(1 − |rnL |2)
Im

[
rnL

(
1 − ei2kRe(nL)dL

)]}
, (22)

where we have used the fact that the factor con-
taining the temperatures reads coth [ βj,Lω

2 ] − coth [ βj,Rω

2 ] =
2[Nj,L(ω) − Nj,R(ω)], being Nj,L,R the boson occupation
numbers for each temperature.

Therefore, in general, the total heat flux does not have a
Landauer’s form, but each of the terms contributing does. As
we have written the total heat flux, all the terms are expressed
in terms of the differences between the occupation numbers of
each part and the occupation number in the right plate. This
can be changed by using the identity resulting from Eq. (21) in
a different way, taking as reference another of the occupation
numbers.

IV. IMPACT OF THICKNESS: ANALYTICAL RESULTS

Once we have obtained general expressions for both the
Casimir force and the heat transfer between the plates of finite
width, we can recover different well-known results as limiting
cases and analyze particular features to gain understanding of
the physics enclosed in the general formulas.

For the case of the Casimir force, part of the features were
studied in Ref. [24] for the case when βφ,L = βφ,R ≡ βφ . Now,
we will summarize the relevant findings of that work and
give generalizations of them based on the introduction of the
intrinsic nonequilibrium initial state for the field.

First, the result for materials without dissipation can
be recovered since Im(ni) ≡ 0, which immediately gives
〈T̂ B,∞

xx 〉Int
B |NoDiss ≡ 0 and the Casimir force is only due to the

initial conditions’ contribution and the regularization term.
Given the intrinsic nonequilibrium state, the Casimir force in
this case is given directly by the substraction of Eqs. (A3) and
(16), but considering real refraction indexes.

Moreover, the Lifshitz formula for the Casimir force can
also be deduced from our general expressions. However, there
is a subtle point that must be considered. This is how to impose
Lifshitz’s scenario (consisting in two half-spaces at thermal
equilibrium) in our expressions. On one hand, we have to
take the infinite-thickness limit as dL,R → +∞ and, on the
other hand, we have to impose that all the temperatures are
equal, βB,L = βB,R = βφ,L = βφ,R ≡ β. This last subtle point
is crucial for deriving the correct expression for the force
between half-spaces from the finite-thickness result, since for
the latter situation, three contributions enter in the expression
of the force: initial conditions, bath contributions, and the
regularization term, each one with its own pair of temperatures.
However, when taking dL,R → +∞, the initial conditions’
term vanishes (〈T̂ IC,∞

xx 〉Int
φ → 0), while the other two do not. As

shown in Ref. [24], for a half-space configuration, there will
be no initial condition contribution at the steady state because
there is no infinite-size empty regions anywhere. In this sense,
the pressure calculated and also the regularization term will be
both considered with βB,L and βB,R. For this case, having the

same temperature for both half-spaces (βB,L = βB,R ≡ β) is
enough to obtain the Lifshitz formula, regardless of the initial
state of the field. However, from a conceptual point of view, if
we want to obtain the Lifshitz formula as an infinite-thickness
limit of the finite-width result, taking dL,R → +∞ together
with βB,L = βB,R ≡ β, it is not enough when βφ,L,R �= β in the
regularization term. Clearly, by also putting βφ,L = βφ,R ≡ β,
the total Casimir force takes the form of the Lifshitz formula.

Nonetheless, as we are introducing the intrinsic nonequilib-
rium initial state, we can go further and give also an expression
for the nonequilibrium version of Lifshitz’s formula, i.e., the
force between two half-spaces when the temperatures are
different from each other. To do this, we have to not only
take the limit of infinite thickness (dL,R → +∞) but also
impose conditions over the temperatures βφ,L,R,βB,L,R. From
the analysis done for the equilibrium case, it is clear that in
the nonequilibrium case the temperatures must be grouped in
left and right, realizing the fact that each of the half-spaces
is in local equilibrium. Therefore, we have to impose βφ,L =
βB,L ≡ βL and βφ,R = βB,R ≡ βR. As shown in Appendix C,
the infinite-thickness limit of Eq. (17) is given by Eq. (C2)
while Eq. (16) vanishes.

Then, by setting βφ,L = βB,L ≡ βL and βφ,R = βB,R ≡ βR,
the total Casimir force for the limit of infinite thickness
(dL,R → +∞) in a nonequilibrium scenario is

FC[a,dL,R → +∞,βL,βR,βL,βR]

=
∫ +∞

0
dωω

[
coth

(
βLω

2

)(
1 −

[
1 − ∣∣rnL

∣∣2][
1 + ∣∣rnR

∣∣2]∣∣1 − rnLrnRe
i2ωa

∣∣2

)

+ coth

(
βRω

2

)(
1 −

[
1 − ∣∣rnR

∣∣2][
1 + ∣∣rnL

∣∣2]∣∣1 − rnLrnRe
i2ωa

∣∣2

)]
, (23)

which is the generalization of Lifshitz’s formula for the case
of nonequilibrium, from which the usual Lifshitz’s formula is
obtained by simply setting βL = βR ≡ β.

It is worth noting that the chosen prescription to obtain the
Casimir force in this nonequilibrium situation gives the correct
expression, while the approach in which the force is calculated
from the difference of the radiation pressures at each side of
a given plate gives an incorrect result in this scenario but a
correct one in the equilibrium case.

On the other hand, for the heat transfer between the plates,
similar analysis can be done, exposing different conceptual
properties than for the force.

A first crucial difference is that this quantity needs no
regularization term since it is, from the beginning, a subtraction
of the radiations traveling in each directions. Moreover, as we
showed in Eq. (21), the total heat flux, in equilibrium, vanishes.
This is achieved since the contributions cancel between each
other. Nevertheless, it should be noted that having βφ,L =
βφ,R = βφ �= βB = βB,L = βB,R does not give vanishing total
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heat flux from the formula, which is also physically true since
the scenario is an out-of-equilibrium one.

Regarding the contributions, it should be noted that the ini-
tial conditions’ contribution QIC

∞ basically measures the asym-
metry between the blackbody radiations that reach the
configuration from the left and the right with different tem-
peratures. In other words, the heat transfer associated to
the initial conditions’ contribution gives the difference be-
tween the radiations coming from left and right after passing
the plate corresponding to the side that they come from.
It is the net difference between the blackbody radiations
coming from the outside of the plates’ configuration after

interacting with the plates. In fact, that contribution for
dL,R = 0 recovers exactly Stefan’s law of blackbody heat
exchange.

On the other hand, the heat transfer associated to the baths
is the difference in the radiation generated by each plate
that reaches the other one. In this case, for dL,R = 0, the
contribution automatically cancels. Moreover, as it is expected,
the contribution also vanishes for dissipationless materials
since Im(ni).

For the case of identical plates (unique material and same
thickness), both contributions to the heat transfer between the
plates take the form

QIC
∞(a,d,d,βφ,L,βφ,R)|1−Mat =

∫ +∞

0
dkk[Nφ,L(k) − Nφ,R(k)]

|t |2(1 − |r|2)

|1 − r2ei2ka|2 , (24)

QB
∞(a,d,d,βB,L,βB,R)|1−Mat =

∫ +∞

0
dωω[NB,L(ω) − NB,R(ω)]

|t |2(1 − |r|2)

|1 − r2ei2ka|2
|n + 1|2

8|n|2 {Re(n)(e2ωIm(n)d − 1)

+ Re(n)|rn|2(1 − e−2ωIm(n)d ) + 2Im(n)Im[rn(1 − ei2ωRe(n)d )]}, (25)

where both contributions have the form of a Landauer-like formula. Then, it can be easily checked now that, for the case of equal
temperature on both sides for each contribution (βj,L = βj,R = βj ), the heat transfers automatically vanish. This leads to a subtle
point, associated with the fact that for the situation of two identical plates (same width and material), we can have that both
contributions vanish regardless if the temperatures of the contributions is the same. In other words, we can have that the total heat
transfer vanishes although βφ �= βB. This particular feature of the heat shows the different natures of the contributions that enters
the calculations in the decomposition of the field operator acting in the total Hilbert space as a sum of operators acting in each
Hilbert subspaces associated to each part of the composite system [Eq. (6)]. Moreover, we can switch on one of the contributions
independently whether the other one vanishes or not, allowing a separately study of each of the contributions. If we like to switch
on the initial conditions’ contribution, it is enough to set βφ,L �= βφ,R while βL,B = βR,B. If we like the contrary, it is enough to
set βφ,L = βφ,R while βL,B �= βR,B.

Finally, we can say that for the case of identical plates, the total heat transfer Q∞ can be given by a Landauer formula by
setting βφ,L = βL,B = βL �= βφ,R = βR,B = βR:

Q∞(a,d,d,βL,βR,βL,βR)|1−Mat

=
∫ +∞

0
dωω[NL(ω) − NR(ω)]

|t |2(1 − |r|2)

|1 − r2ei2ka|2

×
(

1 + |n + 1|2
8|n|2 {Re(n)(e2ωIm(n)d − 1) + Re(n)|rn|2(1 − e−2ωIm(n)d ) + 2Im(n)Im[rn(1 − ei2ωRe(n)d )]

})
. (26)

The other case of interest also for the heat transfer is the
infinite-thickness case (dL,R → +∞). It is straightforward
that when dL,R → +∞, the initial conditions’ contribution
vanishes regardless of whether the material of both plates is
the same; i.e., QIC

∞(a,dL,R → +∞,βφ,L,βφ,R) ≡ 0. Although
a difference in the material of each plate is allowed, because the
configuration is asymmetric, the infinite size of each plate can-
cels the contribution of the radiation impinging from outside
the configuration, giving a zero initial condition contribution
for the heat in contrast to what happen for the case of the force.

On the other hand, the baths’ contribution takes the form

QB
∞(a,dL,R → +∞,βB,L,βB,R)

=
∫ +∞

0
dωω[NB,L(ω) − NB,R(ω)]

[1 − |rnL |2][1 − |rnR |2]

|1 − rnLrnRe
i2ωa|2 ,

(27)

which is a Landauer-like formula, but different from the
previous case of unique material. Again, given this formal

Landauer-like expression, if we take βB,L = βB,R = β, the
contribution vanishes regardless of whether the material is the
same.

Therefore, for the infinite-thickness case (d → +∞), we
can say that the total heat transfer Q∞ is also given by
a Landauer formula, regardless of the temperature of the
radiation outside the configuration, which in this case never
reaches the gap between plates.

However, regardless of these cases, the general case does
not correspond to Landauer’s formula, as we commented
at the end of the previous section. Moreover, even considering
the same temperature for the traveling modes (βφ,L = βφ,R),
the total heat flux cannot be written as Landauer’s formula
when the plates have finite width. Even when setting the
temperature of the traveling modes equal to zero (and therefore,
having Nφ,j ≡ 0), the total heat flux is not given by Landauer’s
formula although it depends only on the baths’ temperatures.

In conclusion, the total heat transfer Q∞ is not always given
by a Landauer-like formula. Moreover, it also presents different
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FIG. 3. Total Casimir force as a function of the width of the
plates d for a left temperature TL = 1

βL
= 300 K and different right

temperatures TR. Equilibrium and nonequilibrium cases are consid-
ered. Parameters are γL,R = 10−1/a, ω0,i = 10/a, ωPl,i = 10/a, and
a = 100 nm.

limiting behaviors than for the force, enclosing different phys-
ical aspects. The general case of finite-width plates of different
materials presents both contributions [QIC

∞(a,dL,dR,βφ,L,βφ,R)
and QB

∞(a,dL,dR,βB,L,βB,R)] different from zero, positioning
the nonequilibrium scenario (βφ,L �= βφ,R �= βB,L �= βB,R) as
very rich and highly nontrivial in the interplay with the
thickness role. In the next section, we investigate some aspects
that can be addressed by numerical analysis.

V. IMPACT OF THE THICKNESS: NUMERICAL RESULTS

Given the exact analysis done in the previous section, it is
interesting to study numerically how the width of the plates
combined with the nonequilibrium features included in the
general result give interesting physical aspects and let us
explore the impact of the thickness in dispersion phenomena.

In this sense, including the possibility of having different
temperatures but the same finite width for both plates (dL =
dR ≡ d), there are remarkable physical effects that can be
interpreted within our theoretical framework.

A crucial question that initially drives this numerical anal-
ysis and that is also of experimental interest is the follow-
ing: Given the formulas for finite-width plates, which is the
thickness from which the value of the total force does not
differ significantly from the value of infinite-width plates
(d → +∞)? In other words, for which scale of thickness d

is the value of the total force closer to the value for d → +∞?
Moreover, from the measurement of the force, for which scale
of d we can say that the plates act effectively as plates of infinite
thickness? From which thickness can a plate of finite width be
considered practically as an infinite-width plate?

On the other hand, some questions that appear related to this
analysis are the following: Is this scale the same for equilibrium
and nonequilibrium scenarios? It is also the same if the quantity
considered is the heat transfer between the plates? Is it the
same physics for the different contributions? Moreover, are
there other remarkable physical effects that appear for different
values of the thickness in nonequilibrium scenarios? Are these
effects tunable in some way?

FIG. 4. Normalized contributions to the total heat as a function of
the width of the plates for a right temperature Tφ,R = TB,R = 300 K
and different left temperatures Tφ,L = TB,L. Note that the initial
conditions’ contribution is normalized with the value at d = 0 (which
corresponds to Stefan’s law), since the contributions goes to zero for
d → +∞, while the baths’ contribution is normalized in the opposite
way given its behavior. Parameters are γL,R = 10−1/a, ω0,i = 10/a,
ωPl,i = 10/a, and a = 100 nm.

Figure 3 shows the behavior of the total Casimir force of
Eq. (15) as a function of the thickness d for both equilibrium
and nonequilibrium scenarios. The dashed lines correspond
to the asymptotic values (d → +∞) of the total Casimir
force given by Eq. (23). It can be observed that the scale of
convergence with the thickness is of the order of the separation
a between the plates.

Therefore, for a given separation of the plates, a plate can
be considered of infinite width when the thickness is greater
than the separation distance.

It is also worth noting that the force is maximized in the
equilibrium case. Moreover, it decreases when there is more
thermal difference between the plates, regardless of which plate
is at higher temperature. This can be physically explained since
in a nonequilibrium scenario, there is a momentum exchange
taking place in the region between the plates that it is not
present in the equilibrium case and tends to separate the plates.
Therefore, the total force between the plates decreases in value,
regardless of which plate is at a higher temperature.

If we now study what happens with the heat transfer between
the plates, the situation changes. In Fig. 4, we observe both
contributions to the total heat as a function of the plate width d.

It is clear that the convergence is achieved in a very different
scale than for the force. In order to differ by less than 10%
from its asymptotic value, the thickness of the plate has to
be greater than 106 times the separation of the plates a. This
means that the contributions to the heat transfer are more
sensitive to the plates’ width than the force in several orders of
magnitude. Given the independence on the switching of each
contribution, this scale could be measured by adjusting the
physical parameters of the configuration (material properties
and temperatures) in the appropriate way.

Moreover, it is worth noting that, on the one hand, for
d = 0 (corresponding to the left side of the Fig. 4) we have
QB

∞ ≡ 0 while QIC
∞ �= 0, giving the value corresponding to

the heat transfer between distant objects at given temperatures
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FIG. 5. Normalized total heat with respect to the blackbody radiation impinging (d = 0) as a function of the width of the plates for a
right temperature Tφ,R = TB,R = 300 K and different left temperatures Tφ,L = TB,L. Parameters are γL,R = 10−3 nm−1, ω0,i = 10−1 nm−1, and
ωPl,i = 10−1 nm−1. The dashed vertical lines correspond to the value of the plasma wavelength λPl ≡ 2πc

ωPl
≈ 63 nm valid for both plates.

a = 100 nm.

TL,TR, which is the one given by Stefan’s law for heat exchange
between two blackbodies [Eq. (A1)]. On the other hand, for
d → +∞ (corresponding to the right side of Fig. 4), we
have that QIC

∞ ≡ 0, while QB
∞ gives Landauer-like formula

expressed in Eq. (27).
Considering this, we can analyze the normalized total heat

flux between the plates resulting from these contributions at
different separation distances a, obtaining Fig. 5 for Tφ,L =
TB,L ≡ TL and Tφ,R = TB,R ≡ TR, with TL > TR. The normal-
ization is with respect to the blackbody flux corresponding to
the expressions for d = 0.

From the chosen normalization and previous comments
about each contribution for d = 0 and d → +∞, on one hand,
we can identify the left value of each curves as the blackbody
heat exchange between the walls of the big oven where the
configuration of plates will take place; i.e., they correspond to
QIC

∞(d = 0) for the different temperature differences and they
are equal to 1 due to the chosen normalization. As this value
is independent of the separation a, it is appropriate to take this
criterion for normalizing the total heat in Fig. 5. However,
it is worth noting that for each temperature difference, the
absolute values of the total heat even at d = 0 are different.
On the other hand, the right value of the curves correspond
to QB

∞(d → +∞). The graph then can be interpreted as the
competition between both contributions for different values
of the thickness d. It is worth noting that this competition
gives rise to a minimum of the total heat transfer for a given
thickness in the scale of the separation of the plates. Physically,
the appearance of the minimum is related to the fact that the
plates emitting radiation also act as a shield of the outside
radiation coming from the walls of the oven. This behavior
is observed when the thickness of the plates d is larger than
the plasma wavelength (λPl ≡ 2πc

ωPl
) for the material forming

the plates, which in our case corresponds to 63 nm. Then, the
net result between how much radiation coming from the walls

is screened by the plates and how much is emitted by them
gives the total heat transfer at each thickness d. Thus, for
small values of the thickness (with respect to the separation
a), we observe that the plates screen more than they emit in
the gap, giving a decrease in the heat flux. As the plates get
thicker, the screening is increased (decreasing in the gap the
amount of radiation coming from the walls of the oven) but
also the radiation emitted by the plates to the gap is enhanced.
For a given thickness d, the radiation emitted overcomes the
screening and the net heat transfer between the plates stops
decreasing and begins to increase until the asymptotic value
for d → +∞, defined only by the radiation emitted by the
plates. The scale at which the value of the heat differs in less
than 5% is when the thickness is around 107 nm, but it gets
longer as the separation a increases.

Moreover, although the attenuation of the heat flux with
respect to the infinite-thickness (d → +∞) value is of the
order of 5–6% in every case, with respect to the blackbody
flux (when d = 0) the percentage of attenuation varies. In
fact, for a given separation, it becomes larger as soon as
the temperature difference increases. At the same time, the
location minimum moves to smaller orders of magnitude as
the temperature difference is larger. Then, the percentage of
attenuation and the location of the minimum can be tuned by in-
creasing the temperature difference, but only in a simultaneous
way.

In Fig. 5, we also see how the total heat flux over the
blackbody flux and the mentioned effects depend with the
separation a. It can be seen that the attenuation could be
increased by enlarging the separation between the plates, and
the order of magnitude of thickness to achieve the attenuation
becomes smaller too. This responds to the fact that for larger
distances, the heat flux between plates provoked by the baths is
lower since it involves less evanescent modes when increasing
the separation. This is why for a distances of 5nm we observe
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FIG. 6. Normalized total heat with respect to the blackbody
radiation impinging (d = 0) as a function of the width of the plates
for for different values of plasma frequencies ωPl. The temperatures
are Tφ,R = TB,R = 300 K and Tφ,L = TB,L = 600 K. Parameters are
γL,R = 10−1/a, ω0,i = 10/a, and a = 100 nm.

that the attenuation is weaker, due to near-field enhancement
of heat exchange between the plates.

Nevertheless, increasing both the difference of temperatures
or the plates’ separation a is not efficient since it demands large
thermal gradients or large separations for reaching only a 10%
shielding that are not desired for MEMS and NEMS devices.
However, we can enhance the shielding (i.e., decrease the heat
transfer) by changing the material properties. In Fig. 6, we
can see the total normalized heat flux for a given difference of
temperatures, a given separation distance, and several values
of the plasma frequency ωPl.

Increasing the plasma frequency ωPl implies decreasing
the plasma wavelength λPl, which means that the reflective
properties of the plates are improved. Thus, the shielding of the
flux related to the initial conditions’ contribution is enhanced,
decreasing the contribution more rapidly as a function of the
thickness d, while the flux associated to the radiated field
by each plate does not change to compensate these decays
for small thicknesses. As a result, the minimum of the heat
flux corresponds to lower percentages of the flux for d = 0,
reaching almost 60% of attenuation when the plasma frequency
is increased by four times.

In terms of materials, we can infer that for dielectrics and
metals as gold this attenuation effect may not be significant,
while for metals like aluminium or platinum (that have a
high-energy plasma frequency value), this effect could not
be neglected. In fact, this allows the possibility of measuring
and tuning the effect for including it in relevant technological
improvements as MEMS and NEMS. Indeed, as the mini-
mum value holds approximately constant in the interval of
thicknesses 103–105 nm, having a 1 μm of precision on the
value of the thickness of the plates is enough to experimentally
perceive the attenuation effect when the mentioned metals are
employed.

Moreover, considering that the values of the total heat
transfer at d = 0 and d → +∞ are defined by QIC

∞ and QB
∞

respectively, it is interesting to study the situation where both
quantities have opposite signs, which can be achieved by

FIG. 7. Normalized total heat with respect to the blackbody
radiation impinging (d = 0) as a function of the width of the plates for
crossed temperatures: Tφ,L = TB,R = 300 K and different right tem-
peratures Tφ,R = TB,L. Parameters are γL,R = 10−1/a, ω0,i = 10/a,
and ωPl,i = 10/a, a = 100 nm.

setting Tφ,L > Tφ,R and TB,L < TB,R. For instance, by taking
Tφ,L = TB,R and Tφ,R = TB,L, we obtain Fig. 7.

Considering the independence of the values at d = 0 and
d → +∞ and setting it with opposite signs, we showed that
there is a thickness for which the heat transfer between the
plates (the flux through the gap) is zero. Physically this can
be understood because as a cancellation between the screened
heat transfer due to the walls of the oven and the heat transfer
resulting from the radiation emitted by the plates. This leads
to the possibility of thermal shielding inside the gap where no
net heat flows from one plate to the other. For the differences
on temperature considered, the thickness at which the total
heat is zero is between 104 and 108nm. This shows that the
value can be modified and tuned, for example, by increasing
the temperature difference, as can be seen. It is worth noting
that varying the separation a does not affect substantially the
value of the thickness at which we obtain a zero flux.

VI. CONCLUSIONS

In this work, we have studied different physical aspects of
dispersion phenomena in a nonequilibrium scenario, including
Casimir force and heat flux. We considered a configuration of
two plates of finite width dL,R formed by materials described
from a first-principles model, allowing the natural introduction
of dissipation, noise, and temperature in the calculations.
Using the formalism developed in Ref. [24], we calculate the
expectation value of the energy-momentum tensor operator in
the steady state as a sum of two contributions, one associated
to the initial conditions of the field and the other one associated
to the baths in each point of the material plates. This splitting is
ensured by the fact that the baths are characterized by thermal
states of temperaturesβB,L,βB,R respectively for each plate. For
the case of the field, we considered an intrinsic nonequilibrium
state, where the modes traveling from left to right (k > 0)
are at a temperature βφ,L, while the modes traveling from
right to left (k < 0) are at a temperature βφ,R. The choice
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of this initial state for the field turns out to be crucial at
the regularization prescription in order to obtain the nonequi-
librium generalization of Lifshitz’s formula (force between
half-spaces) from the finite-width expressions. Moreover, the
correct prescription to calculate the force is the one defined
from the subtraction between the radiation pressure between
the plates (calculated as a sum of two contributions) and the
radiation pressure given without the plates in the appropriate
field state, in this case, the intrinsic nonequilibrium. This is the
generalization of the well-known Casimir’s prescription for the
case of nonequilibrium. Here, we point out that the procedure
to calculate the force from the difference of the radiation
pressures at each side of a given plate gives an incorrect result
for the force, which is not symmetric under the exchange of
the plates by doing L ↔ R. Then, we give full expressions for
both the Casimir force and the heat flux between the plates of
widths dL,dR.

For the case of the Casimir force, we reproduce particular
situations as the expression for dissipationless materials and
null widths (d = 0). Also, we give insights to obtain the
equilibrium Lifshitz formula (for half-spaces), but also its
generalization for the nonequilibrium case (taking dL,R →
+∞), which strongly depends on the intrinsic nonequilibrium
state considered for the field. On the other hand, from the
numerical analysis, we show that the scale of convergence in
the thickness d is of order of the separation a in a configuration
of two plates of same dielectric material and width. We can
say that the infinite-thickness value for the force is effectively
achieved when the width of the plates is of order of the
separation between them. Moreover, we showed that the force
decreases with the thermal imbalance, with the maximum
given by the equilibrium value. We associate this to the fact that
in a nonequilibrium scenario, there is an additional momentum
transfer between the plates that tends to decrease the value of
the net force between them.

For the case of the heat flux between the plates, we also
give general expressions but without requiring any regular-
ization since the heat flux is a subtraction between radiations
from the very beginning. Regarding the contributions, on
one hand, the initial conditions’ contribution to the heat flux
measures the asymmetry between the blackbody radiations
reaching the configuration from each side, which reproduce
Stefan’s law for blackbody heat exchange when taking d =
0. On the other hand, bath contributions are basically the
difference between the radiations emitted by each plate, which
we show cancel out for the case of null widths (d = 0).

It is worth noting that in the general case, we prove that the
total heat flux between the plates is not given by a Landauer-
like formula. However, the expression for the total heat flux
between the plates can be written in terms of differences
between the boson occupation numbers at each temperature.
In other words, for the general case the total heat flux does
not have the form of Landauer unless there are only two
different values of temperature in the problem, although it
can be expressed as a sum of Landauer-like terms. Moreover,
even considering the vacuum state (characterized by zero
temperature and number of photons) as the initial state for
the field, the heat flux for finite-width plates does not have the
Landauer form. Nevertheless, there are some particular cases
where the heat flux reduces to Landauer formulas. For example,

we show that for identical plates (same material and width),
both contributions result as Landauer formulas separately. If
the temperature in one of the contributions agrees with the
temperature in the other one, the total heat flux can be written
in Landauer form (regardless of the value of the thickness).
Also, we show that a Landauer formula is obtained in the case
of infinite-thickness for the plates (dL,R → +∞), where the
initial conditions’ contribution goes to zero while the baths’
contribution takes Landauer form even for plates of different
materials.

In the numerics, for the same scenario analyzed for the force,
we first showed that the scale of convergence in thickness
of each contribution is several orders of magnitude greater
than the case for the force; i.e., the thickness has to be around
106 times the separation. For the total heat flux, on the other
hand, we found two interesting behaviors as a result of the
combination of both contributions.

For the case of considering Tφ,L = TB,L = TL �= TR =
Tφ,R = TB,R, we showed the formation of a minimum in the
heat flux between the plate due to the opposite behaviors
of each contribution. We showed that the location of this
minimum can be tuned by varying the difference between
temperatures TL,R. Moreover, the minimum implies that for
thicknesses of the order of the plasma wavelength of the
material λPl, there is a shielding of the blackbody radiation
impinging on the configuration, while the radiation emitted by
the plates becomes important for large thicknesses. The relative
percentage with respect to the asymptotic value at d → +∞ is
on the order of 5–6%, while the blackbody radiation impinging
(d = 0) depends on the thermal difference and plate separation,
giving a chance to have a variable relative percentage but that
is not significant. Nevertheless, taking advantage of the fact
that λPl decreases for better reflective materials (higher plasma
frequency ωPl), the percentage of attenuation corresponding to
the minimum can be tuned by changing the plasma frequency.
This responds to the fact that better reflectivity properties result
in a better shielding of the initial conditions’ contribution
while the radiation provided by the plates is not enough to
compensate for this effect at small thicknesses, increasing
the attenuation to almost 60% when the plasma frequency is
four times the typical value for dielectrics. This means that a
strong attenuation effect could be attainable with typical metals
as aluminium and platinum, being of crucial importance for
MEMS and NEMS devices. In other words, we think that our
results are important in nanotechnological applications.

Considering the existence of this minimum and regardless
of the material considered, we pointed out another interest-
ing issue when considering Tφ,L = TB,R �= Tφ,R = TB,L. We
showed that a null heat flux can be achieved for a given thick-
ness. This is explained by the fact that there is a cancellation
of the contributions to the heat flux in the gap between the
plates. The thickness for which the heat flux vanishes can be
tuned by the thermal difference too. This configure a situation
of thermal shielding in the gap.

As a final comment, it should be noted that these results can
be easily extended to the three-dimensional scalar field, where
two kinds of modes enter, the evanescent and the propagating.
On the other hand, addressing the extension for the EM case
could be in principle a nontrivial issue but is in any case
achievable. It is clear that the main complication will be related
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to the difficulties associated to quantizing the EM field, which
forces us to deal with its gauge invariance and vectorial nature
at a quantum framework. However, the conclusions obtained
here for the scalar case will remain broadly valid for the
EM field. Finally, we left as pending work the possibility
of extending this analysis to include different materials and
thicknesses, and also changing the temperature differences
independently for each contribution.
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APPENDIX A: INTRINSIC NONEQUILIBRIUM INITIAL
STATE OF THE FIELD

This appendix is devoted to commenting on some of the
properties of the mentioned “intrinsic nonequilibrium state”
for the initial state of the field. Defined by the expectation
values given in Eq. (12), the state basically represents the net
radiation flux given in a big oven with its vertical walls at
different temperatures βφ,L and βφ,R respectively.

Considering that the annihilation and creation operators for
the initial conditions’ contribution [̂ak(−∞),̂a†

k(−∞)] are the
ones of the free field, we can calculate the expectation value
of the Poynting vector without the presence of the plates (i.e.,
free space) for the intrinsic nonequilibrium state. As in this
case it is also valid that 〈ŜFree

x 〉
φ

= −〈T̂ Free
x0 〉

φ
and having the

field operator given by an expression of the form of Eq. (7) but
with the field modes � replaced by plane waves e±ikx then, by
using Eq. (12), we find

〈
ŜFree

x

〉
φ

=
∫ +∞

0
dkk

[
coth

(
βφ,Lk

2

)
− coth

(
βφ,Rk

2

)]
= 2

∫ +∞

0
dkk

[
Nφ,L(k) − Nφ,R(k)

]
. (A1)

Both integrals are easily done as in Ref. [36], giving

〈
ŜFree

x

〉
φ

= π2

3

(
1

β2
φ,L

− 1

β2
φ,R

)
= π2

3

(
T 2

φ,L − T 2
φ,R

)
, (A2)

which have the thermal dependence of the (1+1)-dimensional
version of Stefan’s law for the heat exchange through black-
body radiation between two bodies at temperatures Tφ,L,Tφ,R.
This is the crucial point that allows us to interpret the state
defined by Eq. (12) as a nonequilibrium state since it gives a
heat flux even in free space. Moreover, since the radiation is
blackbody-like, which is far-field radiation, we can think that
all the space is inside a big oven with its walls at x = ±∞ held
at different temperatures Tφ,L,Tφ,R, causing net heat transfer by
radiation going from the hottest side to the other one. In other

words, the intrinsic nonequilibrium state represents the state of
the field when there are distant sources in both sides emitting
radiation at given different temperatures. It is clear that when
Tφ,L = Tφ,R, the Poynting vector for free space vanishes.

On the other hand, the energy density for this state is given
by〈

T̂ Free
00

〉
φ

= 〈
T̂ Free

xx

〉
φ

=
∫ +∞

0
dkk

[
coth

(
βφ,Lk

2

)
+ coth

(
βφ,Rk

2

)]
,

(A3)

which is the typical expression for the energy density for a
thermal state in free space, fully recognizable when setting
Tφ,L = Tφ,R.

APPENDIX B: COEFFICIENTS

This appendix is devoted to give the expressions of the
coefficients that appear in the contributions to the Casimir force
and the heat between the plates. For the given configuration
of finite-width plates (dL,R), the boundary conditions on the
modes were continuity of the mode and its spatial derivative at
the interfaces between the material slabs and the surrounding
vacuum (see Ref. [24] and the references therein). The coeffi-
cients then follow

Ts = tRtLes(dL+dR)

1 − rLrRe−2sa
, C>

s = e−sdR
Ts

tR
, D>

s = e−s(a+dR) rR

tR
Ts,

(B1)

E>
s = (nR + 1)

2nR

es(nR−1)( a
2 +dR)Ts,

F>
s = (nR − 1)

2nR

e−s(nR+1)( a
2 +dR)Ts, (B2)

where we have given the coefficients in terms of the transmis-
sion coefficients of the two plates configuration T >

s . Moreover,
rL,R and tL,R are the reflection and transmission coefficients
for the left and right plates respectively:

ri = rni
(1 − e−2snidi )(

1 − r2
ni
e−2snidi

) , ti = 4ni

(ni + 1)2

e−snidi(
1 − r2

ni
e−2snidi

) ,

(B3)

with rni
= 1−ni

1+ni
, the reflection coefficient of a surface of

refractive index ni .
It should be noted that the < coefficients are obtained from

the given ones by the interchange of L and R in the expressions.
Considering this, it turns out that T >

s = T <
s , which is why the

superscript for this coefficient was omitted before.

APPENDIX C: INFINITE-THICKNESS EXPRESSIONS
FOR THE FORCE

This appendix is devoted for the limit expressions that are
obtained for the infinite-thickness case. This scenario will be
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obtained from two approaches. On one hand, by taking the
limit dL,R → +∞ in Eqs. (16) and (17), as was similarly
done in Ref. [24] for the case when βφ,L = βφ,R ≡ βφ . On the
other hand, we also show that the same result can be obtained
from the half-space scenario from the very beginning with the
present formalism.

1. Infinite thickness as a limit of the finite width scenario

To successfully take the limit of infinite width on the
contributions to the total force, we are going to consider each
of them separately. First of all, it is clear that the regularization
term 〈T̂ Free

xx 〉φ does not depend on the thickness d so the term
remains in the limit.

On the other hand, for the initial conditions’ contribution
it is enough to consider that for dL,R → +∞, we have that
ri → rni

while ti → 0. Therefore, this allows us to say that
〈T̂ IC,∞

xx 〉Int
φ → 0, regardless of the state considered.

For the bath contribution, we have to take into account more
subtle points when taking the limit in some combinations of
factors. Considering Eq. (B3), while ti → 0, we also have that
|ti |2e2ωIm(ni )di → 16|ni |2

|ni+1|4 . Therefore, considering the definition
for the different coefficients, given in Eq. (B1), and that
1 − |rni

|2 = 2Re(ni )
|ni+1|2 , we can write for the factor accompanying

coth ( βB,Lω

2 ) in Eq. (17):

Re(nL)

2|tR|2 {|E<
−iω|2e−ωIm(nL)a[1 − e−2ωIm(nL)dL ]

+ |F<
−iω|2eωIm(nL)a[e2ωIm(nL)dL − 1]

+ 2
Im(nL)

Re(nL)
Im[E<∗

−iωF<
−iωe−iωRe(nL)a(1 − e−i2ωRe(nL)dL )]}

−→ (1 − |rnL |2)

|1 − rnLrnRe
i2ωa|2 , (C1)

and the same happens for the factor accompanying coth ( βB,Rω

2 ),
but interchanging L and R.

Therefore, for the contribution of the baths, we have〈
T̂ B,∞

xx

〉Int
B [a,dL,R → +∞,βB,L,βB,R]

=
∫ +∞

0
dωω

[
coth

(
βB,Lω

2

)[
1 − ∣∣rnL

∣∣2
][

1 + ∣∣rnR

∣∣2
]

∣∣1 − rnLrnRe
i2ωa

∣∣2

+ coth

(
βB,Rω

2

)[
1 − ∣∣rnR

∣∣2
][

1 + ∣∣rnL

∣∣2
]

∣∣1 − rnLrnRe
i2ωa

∣∣2

]
. (C2)

Finally, considering this last expression and subtracting it
with the regularization term after setting βφ,L = βB,L ≡ βL

and βφ,R = βB,R ≡ βR, we obtain the force between two half-
spaces at different temperatures, given by Eq. (23).

After setting thermal equilibrium between the baths and the
field (βB,L = βB,R = βφ,L = βφ,R ≡ β), the total force reads

FC[a,dL,R → +∞,β,β,β,β]

= −
∫ +∞

−∞
dkk coth

(
βk

2

)
Re

[
rnL (−ik)rnR (−ik)ei2ka

1 − rnL (−ik)rnR (−ik)ei2ka

]
,

(C3)

which is Lifshitz’s formula.

2. Infinite-thickness scenario

The expression for the Casimir force between half-spaces
at different temperatures and given distance a can be also
obtained by considering a half-spaces scenario from the very
beginning and applying the same approach developed in
Ref. [24].

It is shown that if in the considered scenario there are no
infinite-size regions of vacuum or dissipationless material, then
the steady situation is defined by the baths’ contribution only
(there is no initial conditions’ contribution in these cases).

Therefore, for the half-spaces scenario from the very be-
ginning, the only contribution to the energy-momentum tensor
will be that of the baths.

As in the finite-width case, the contribution of the baths
to the field operator will be written in terms of the Green’s
function of the given problem. Therefore, the expectation
value of the components of the energy-momentum tensor
can be calculated from Eq. (14). The information about the
configuration is clearly enclosed in the Green’s function for
the considered scenario that can be calculated as in the method
commented in Ref. [24].

In the half-spaces scenario, for − a
2 < x < a

2 and x ′ < − a
2 ,

the Green’s function reads

GRet(x,x ′,ω) = 1

2iωnL

(
A>

−iωeiωx + B>
−iωe−iωx

)
e−iωnLx ′

,

(C4)
where the coefficients is given by

A>
s = 2nL

(nL + 1)

es(nL−1) a
2(

1 − rnRrnLe
−2sa

) ,

B>
s = − 2nL

(nL + 1)
rnR

es(nL−3) a
2(

1 − rnRrnLe
−2sa

) . (C5)

On the other hand, for − a
2 < x < a

2 and a
2 < x ′, we have

the same expression for GRet but exchanging L with R.
With all these considerations, it can be shown that 〈T̂ B,∞

xx 〉B

results equal to Eq. (C2). Therefore, to obtain the Casimir
force we have to regularize the expression by subtracting the
pressure without plates, which is given by Eq. (A3). Finally,
it is clear that at the end we obtain the same expression for
the nonequilibrium Casimir-Lifshitz force that we obtained
from the infinite-thickness limit of the finite width scenario
[Eq. (23)].
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